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Abstract—This paper considers the problem of privately re-
porting counts of events recorded by devices in different regions
of the plane. Unlike previous range query methods, our approach
is not limited to rectangular ranges. We devise novel hierarchical
data structures to answer queries over arbitrary planar graphs.
This construction relies on balanced planar separators to repre-
sent shortest paths using O(logn) number of canonical paths,
where n is the number of nodes in the graph. Pre-computed sums
along these canonical paths allow efficient computations of 1D
counting range queries along any shortest path. We make use
of differential forms together with the 1D mechanism to answer
2D queries in which a range is a union of faces in the planar
graph. The methods are designed such that the range queries
could be answered with differential privacy guarantee on any
single event, with only a poly-logarithmic error. They also allow
private range queries to be performed in a distributed setup.
Theoretical and experimental results confirm that the methods
are efficient and accurate on real data and incur less error than
competing existing methods.

Index Terms—range query, differential privacy, planar graphs,
Internet of Things

I. INTRODUCTION

Large scale spatial data can be collected using densely
deployed sensors and IoT devices, including traffic sensors,
wireless hotspots, roadside units, and surveillance cameras,
that detect and capture activities of interest. Examples of
such data include location snapshots of a population, events
in traffic, occupancy and motion sensing information. These
sensors are increasingly connected through efficient network
infrastructure and can communicate freely. The large quantities
of data from these sources raise challenges on several fronts.
First, the analysis and query mechanisms on such spatial
data must be efficient in storage and computation. Distributed
mechanisms, where possible, can aid both the speed and
scalability of these systems and edge-computing has emerged
as a popular setup for this kind of computation. Second, spatial
data can contain information that is personally identifiable or
sensitive in other aspects. Privacy issues of location reports
and trajectories of mobile users have long been recognized as
a serious concern [1], [18], [29].
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from the European Unions Horizon 2020 research and innovation programme
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This paper considers the problem of counting range queries
in a spatial domain – given a spatial range R in the plane, find
the number of events recorded by sensing devices within R.
In our setting, we consider an embedded planar graph G in
the domain and query ranges in consideration are either along
paths in G or as sets of faces in G. This approach makes
the proposed method widely applicable across many kinds of
geographical data that are given in terms of planar graphs
such as maps. Administrative or natural boundaries based
on postal zip codes, electoral districts, police precincts, etc.,
provide natural planar subdivisions of the plane. Statistical
queries and analysis based on such subdivisions are com-
mon in demographic studies, since administrative decisions
and strategies are based on these subdivisions. In addition,
the sensing system itself may create subdivisions based on
proximity. For example, cellular base stations divide the plane
into hexagonal Voronoi cells. Such graphs are convenient as
they do not require precise localization and an event or object
can be assigned simply to the cell of the nearest base station.
In other systems, sensors may collaboratively track objects [2]
and mutually agree on a local subdivision graph [12].

There are two types of queries that are of interest:

• Counting along a 1D path. Certain paths in the graph
G are of natural interest for counting range queries. For
example, a path may represent the border between two
administrative divisions, where the number of people or
vehicles crossing can be of interest; or, a path in G may
represent a road, a bus route or travel plan and one may
want to know the number of emergency events on the
route. In this paper, we consider queries along shortest
paths in G.

• Counting in a 2D range. The common types of 2D ranges
consist of the connected sets of faces of the planar graph
(see Fig. 1(a)). In this paper, we consider queries on
ranges with O(1) shortest paths on boundary.

Such query engines have privacy concerns across applica-
tions. For example, transport demand can be estimated by ag-
gregating taxi pick-ups and drop-offs along roads, but can also
reveal an individual’s actions to a well informed adversary.
In another application, users often provide their residential
addresses to avail certain online services. The service provider
or a third party company may use the data to extract knowledge
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such as spatial penetration, but run the risk of exposing the
participation and behavior of individual users.

In this paper, we present an efficient data structure and
query schemes that support range queries in planar graphs with
privacy guarantees. Here we want to achieve a good trade-off
between accuracy (the range query answers are approximately
accurate) and privacy (that the knowledge of the existence of
a single event protected with a probability). Let us first review
the state of art for range queries and differential privacy and
then present our contributions.

A. Related Work

Spatial Range Queries. Efficient range queries have been
extensively studied in computational geometry [8], [27] the
orthogonal range searching, in which the query ranges are
specified by d-dimensional axis-aligned rectangles; and sim-
plex range searching, in which a range is a d-dimensional
simplex (e.g., a triangle in 2D).

In orthogonal range searching, the general philosophy is to
build a hierarchical space decomposition scheme (quadtree,
kd-tree, etc.) such that the query values are pre-computed for
carefully selected ranges (called canonical ranges) in the space
decomposition. For a given range query, these canonical ranges
are used to build up the query answer. The best performance
is obtained by balancing two parameters: the number of
pre-computed canonical ranges (the storage size of the data
structure) and the number of canonical ranges needed to
answer a query (query cost/time). For n points in Rd, the best
bound for orthogonal range query in Rd achieves linear space
and O(logd−1 n) query time (e.g., using d-dimensional range
tree). Simplex range searching is much more challenging and
bounds are typically worse. For any linear size data structure
simplex range query has to take Ω(n1−1/d) time [4] and there
are algorithms with nearly matching upper bounds [21]. Alter-
natively, there are algorithms with polylogarithmic query time
the storage has to be super-linear (essentially in O(nd)) [5].

Differentially Private Range Queries. In differential pri-
vacy [9], [10], from the answer to a query, it should not be
possible to determine with high confidence if a particular item
was present in the input dataset. This is achieved by introduc-
ing random noise to the query process such that the probability
of the observed output does not change significantly (with a
probability no more than a factor of eε for a small ε) due to
presence or absence of a particular element in the input. The
study of range query with differential privacy was only done
for orthogonal ranges in [3], [11], [15], [28] and further refined
in [7], [22], [23]. The general strategy in these methods, as
with orthogonal range searching, is to precompute perturbed
values to canonical ranges which were then used for queries.

B. Our Contribution

As opposed to the above prior works, this paper considers
queries on ranges defined on a planar graph, which has
never been studied before. The major contribution of this
paper is that it presents, for the first time, an efficient range
query mechanisms on planar graphs. With a total storage of

O(n log2 n), where n is the number of vertices of G, the
proposed algorithm can answer both 1D queries on shortest
paths and 2D queries on ranges with O(1) shortest paths as
boundaries in time O(log n). Further, the method achieves ε-
differential privacy on any recorded event with error bound
by O( 1

ε log3.5 n · log logn · log 1
δ ) with probability at least

1−δ. This is the first non-trivial ε-differential privacy result for
non-orthogonal range queries. Achieving these results requires
novel algorithms and data structures on shortest paths of planar
graphs.

Our approach to the problem consists of pre-computed local
aggregate values called partial sums or p-sums, such that any
query can be answered by adding together a small number of
p-sums. An additional requirement for effective differential
privacy is that any data item should contribute to only a
small number of p-sums. The proposed algorithm achieves
both properties.

To answer 1D range queries along shortest paths, the
planar graph G is recursively decomposed using shortest
path separators [26]. Here, a separator is a shortest path in
G and it decomposes G into two pieces each of size at
most 2/3 the original size. On a shortest path separator, we
construct a binary search tree, and at the nodes of the tree
store the aggregate count in the subtrees as Type-I p-sums.
Next, another hierarchy of random sampling of the vertices is
constructed, such that each vertex is promoted to the higher
level with probability 1/2 independent of others. Within each
connected component G′ created by the separator hierarchy,
we identify Type-II p-sums on shortest paths between two
random samples at level i with no interior vertices on level i,
and i being roughly logarithmic of the size of G′. The success
of the scheme lies in this multi-scale choice of p-sums such
that any shortest path can be decomposed into O(log n) of
these p-sums.

This idea is extended to 2D range queries using differential
forms introduced in [25], which turns the counting range query
in a 2D range, R, to a query along the boundary of R, thus
changing the 2D range query to the above 1D range query
problem, and we can apply the same technique as above.

While the theoretical bounds are only proved for shortest
paths (Sections III and IV), our experiments show that our
methods are efficient and accurate on trajectories and paths
obtained from real datasets (Section VI).

II. PRELIMINARIES

This section formalizes the models for sensing, networking,
data, privacy and utility.

A. Discrete Data Model and range queries

We discretize the plane as a cell complex [14]. This decom-
position can be visualized as a planar graph, where the faces
of the planar graph are the cells. See Figure 1(a). A range in
this complex is defined in terms of the elements of the cell
complex. A 2D range is a set of adjoining faces that together
form a topological disk. A 1D range is essentially a simple
path. Given a range R, the range query becomes:
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1) 1D: c(R) =
∑
e∈R c(e) [Summation over edges in R.]

2) 2D: c(R) =
∑
f∈R c(f) [Summation over faces in R.]

This discretization treats the edges or faces as atomic elements
that are added over to achieve the sum. We will see in
Subsection II-B that this view fits naturally with a distributed
sensing and computing approach. In this work, we do not
consider the case of continuously changing counts and work
with a static snapshot of the data recorded at a particular time.

Face
Vertex

Edge

1D range
2D range

(a) (b)

Fig. 1. (a) a planar graph. The shaded region demonstrates 2D range. The
blue path is a 1D range. (b) Sensing devices at the edge, and regions sensed
for a 2D range and a 1D range. The leaders for a face and an edge are shown
as shaded.

B. Distributed computation and network model

We assume that the sensors can communicate with the
query aggregator and with each other in constant cost using
modern communication infrastructure. Further, let us assume
that the sensors are aware of the planar subdivision, and
they coordinate among themselves for basic tasks. Devices
in each cell coordinate to elect a leader for that cell who
is responsible for managing data and actions in that cell
(Figure 1(b)). An event can be detected and localized by
nearby sensors, this information is reported to a suitable leader
in the neighborhood.

The rest of the paper takes the simplified view that there is
one device – the leader for the cell – corresponding to each
cell (2D or 1D). Moreover, assume that the sensors trust each
other to sanitize and transmit data, but they may not trust the
aggregator to protect privacy.

C. Differential privacy

The objective is to answer range queries with differential
privacy, i.e., from the range query responses, it should not
be possible to infer with high confidence if a particular event
x has been recorded. Suppose, D and D′ are two possible
versions of the datasets that differ in the presence of the event
x. Such pairs of datasets are called adjacent datasets.

Definition 2.1 (Differential Privacy). A randomized range
query response mechanism M is ε-differentially private if for
any two adjacent datasets D and D′ and any measurable subset
H ∈ Range(M), Pr[MD(R) ∈ H] ≤ exp(ε) · Pr[MD′(R) ∈
H], for any range R ∈ R.

A differentially private mechanism typically adds noise to
the true query answer to obfuscate the precise value. This noise
is commonly sampled from a Laplace distribution with zero
mean and variance 2b2, written as Lap(b), and its probability

density is given as: P (x|b) = 1
2b exp(− |x|b ). The mechanism

is commonly called as the Laplace mechanism [10]. A larger
variance (i.e., larger b) implies greater noise in the output
which results in greater privacy but reduced utility.

The level of noise is usually determined in terms of sensi-
tivity. The sensitivity of a function f , written as ∆f , is the
largest possible difference in the output of f between any pair
of adjacent databases: max(D,D′)|f(D)− f(D′)|. To achieve
ε-differential privacy, a noise of Lap(∆f/ε) suffices [9].

D. Multiple queries

To support spatial range queries, each cell s can store the
count of events, c(s) and while responding to a query add
Lap(1/ε) noise to make it differentially private. However,
with multiple queries, it is possible to infer the true answer
to arbitrary precision as the average noise will converge to its
mean zero. Therefore, to guard against q queries, differential
privacy methods usually increase the noise variance by a factor
of q and use Lap(q/ε) as the distribution or analogously
increase the sensitivity q times.

One way to avoid higher noise is to report the same
noisy count without recomputing the noise. Thus it results
in Lap(1/ε) noise as in the case of a single query.

E. Accuracy loss in range queries

A range consists of multiple cells. Over many cells, the
noises can add up, and deviate from the true count. The
following result from [3] gives a bound on the deviation:

Lemma 2.2 (Sum of Independent Laplace Distributions).
Given γi as independent random variables following Laplace
distribution Lap(bi). Suppose Y =

∑
i γi. Then, |Y | is at

most O(
√∑

i b
2
i log(1/δ)) with probability at least 1 − δ,

0 < δ < 1.

In our context, if a query range consists of m cells, where
each cell adds an independent noise from Lap(1/ε), then the
noise is only bounded by O( 1

ε

√
m log 1

δ ) with probability 1−δ.
Thus, even if each cell computes a fixed noise, and returns the
same answer on each query, the total noise can be excessive
for a large range.

F. 1D range query and partial sums on 1D data

Let us consider a single path P with m edges where each
edge contains a value and the queries ask for aggregates over
subpaths of P . Now, construct a binary search tree, B, with
the edges of P as leaves. Every node in B corresponds to
some subpath of P , and it stores the query answer for that
subpath as a range, which is called a partial sum, or p-sum.
Any subpath in P can be represented by at most logm nodes
of B. Thus, a range query now adds only logm values, each
of which is a p-sum. In this case, the tree has logm levels,
and each leaf node contributes to logm different unique p-sum
values, each of which can be queried separately. Thus, each
value on edges of P have to answer logm different queries
and need Lap( logm

ε ) noise.

2235
Authorized licensed use limited to: CAMBRIDGE UNIV. Downloaded on June 09,2022 at 21:28:12 UTC from IEEE Xplore.  Restrictions apply. 



Thus, in [3], Lap( logm
ε ) noise is added to each p-sum node

of B to answer a range query using B. Any such answer
adds together at most logm p-sums, each of which adds an
independent noise from Lap( logm

ε ). Thus, the error due to
noise is bounded by O( 1

ε · (logm)1.5 · log 1
δ ) with probability

at least 1− δ.
The main insight here is that the noise depends on balancing

two different quantities:
• x : The number of p-sum values to which each item

contributes;
• y : The number of p-sum values needed to answer a range

query R.
Each p-sum needs a noise of distribution Lap(x/ε) added to
its pre-computed value. This ensures that ε-differential privacy
with O(

x
√
y

ε ) error is achieved with high probability.
The same idea was independently discovered by several

groups of researchers with the same upper bounds [11], [19],
[28], and studied in [6], [7], [22]. Further, it is shown [11] that
the error has a lower bound of Ω( 1

ε logm). Thus the upper
bound is nearly tight. Further, the 1D counting using p-sum
generalizes to multi-dimensional rectangle queries [3], [28].

This paper goes beyond strict rectangular range queries and
consider a much more general set of ranges, defined using a
planar graph in the domain. The main technical challenge is to
carefully re-define p-sums that support efficient range queries.

III. PRIVATE SPATIAL SENSING AND PATH QUERIES ON
PLANAR GRAPHS

Let us first discuss the 1D range query along shortest paths
on a planar graph – given a planar graph G = (V,E), on
which each edge (u, v) carries a nonnegative integer value
s(u, v), query ranges are shortest paths in G. Say, the set of
all shortest paths in G is R and a range P (x, y) ∈ R is the
set of edges along the shortest path from x to y. Without
loss of generality, we assume that between any two vertices
there is a unique shortest path1. Thus, there are

(
n
2

)
ranges

to consider and one edge can belong to Ω(n2) ranges. Each
range or shortest path can consist of Ω(n) edges.

Naı̈ve differential privacy mechanisms incur high error:
• Simple Mechanism I: For a query over a shortest path
P (x, y), add Lap(n

2

ε ) noise to the actual count for the
range. Since an edge could stay on Ω(n2) many shortest
paths, the noise needs to be proportional to Ω(n2) to
achieve ε-differential privacy. The range query error in
this case is O(n

2

ε ).
• Simple Mechanism II (Local Privacy): For each edge

(u, v), add Lap( 1
ε ) noise to its true value s(u, v). To

answer a query over P (x, y), sum the noisy counts of
the edges in P (x, y). Since a path may have length Ω(n),
this mechanism achieves ε-differential privacy with error
O( 1

ε

√
n). This mechanism achieves local differential pri-

vacy since noise is added to each sensor data separately.

1This could be achieved by adding small perturbation on edge weights.

In both cases, the error is polynomial in n. In the following,
we will use the balanced separator hierarchy to reduce the error
to be logarithmic in n. The key is to identify a proper set of
p-sums. The overall strategy is sketched in Algorithm 1.

Algorithm 1 Create spatial p-sums on a planar graph G
1: Recursively partition G into connected components in
O(log n) levels using balanced shortest path separators
(Section III-A). Construct Type-I p-sums (binary tree)
along the shortest path separators.

2: In each connected component in the graph decomposition,
construct Type-II p-sums on canonical shortest paths,
shortest paths between certain node pairs. (Section III-B).

Given a query on a shortest path in G, it can be decomposed
into a small number of segments, each of which run along
either shortest path separators or canonical shortest paths
(Section III-D). Since p-sum hierarchies are constructed for
both of them, the range query can be answered using a small
number of p-sum values. Additionally, this hierarchic structure
also satisfies the property that an edge contributes to a small
number of p-sums. Now, let us start with planar separators and
recursive partitioning.

A. Planar separators and hierarchic decomposition

A classical result in graph theory is that a planar graph
admits a small sized balanced separator. Lipton and Tarjan [20]
showed that one can remove O(

√
n) vertices, called a separa-

tor Z, such that the graph G of n vertices is decomposed into
two subgraphs A and B each with at most 2n/3 vertices and
with no edges connecting A and B.

We use separators that are constructed using shortest paths.
Specifically, from an arbitrary node as the root r, a shortest
path tree called H(r) is constructed. A fundamental cycle is
a cycle that contains a single non-tree edge (u, v) and the
shortest paths connecting u, v to the root r of the tree H(r).
Removing a fundamental cycle decomposes a planar graph into
at least two remaining subgraphs. In any graph, there exists
a fundamental cycle Z such that each subgraph obtained by
removing Z has at most 2n/3 vertices.

The above observation was described in Lemma 2 of [20],
Lemma 2.3 of [26]2 and also evaluated in [16]. This operation
can be implemented in linear time. In the above papers, the
goal was to get a separator of size O(

√
n). In the current

context, we do not require using a small separator. Thus,
the balanced separator by one fundamental cycle as described
in [16] suffices.

Recursive partitioning using planar separators. We run the
balanced separator recursively. That is, start with a planar
graph G, remove the separator Z(G), and G is decomposed
into two pieces A(G) and B(G), each of which has at most
2|n(G)|/3 vertices, where n(G) is the number of vertices in

2In [26] the authors described removing three shortest paths from r to three
vertices of a triangle in G such that all the partitioned pieces have size strictly
smaller than n/2.
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G. Now for each subgraph A(G) and B(G), we find their
balanced separators and further decompose them recursively.
This will eventually create a hierarchical balanced decompo-
sition of G. This decomposition can be abstracted by a tree
Φ with depth of O(log n). Each node α in this decomposition
corresponds to a subgraph denoted as G(α) of G. We denote
the number of vertices of G(α) by n(α) in abbreviation of
n(G(α)) and the same goes with the following denotations.
The separator that further partitions G(α) is written as Z(α),
and it produces subgraphs A(α), B(α). The subgraph at a node
α at j hops from the root of Φ has size n(α) ≤ (2/3)jn. See
Figure 2 for demonstration.

· · ·

G

A(G) B(G)

A(α) B(α)

A(G)

B(G)

r

G(α) α

Fig. 2. The balanced separator hierarchy.

Observation 3.1. Properties of hierarchic decomposition:
1) Each edge stays on at most one separator in the hierarchi-

cal balanced decomposition.
2) Each edge stays in at most O(log n) subgraphs of the

decomposition Φ.

The balanced separator hierarchy helps us to answer queries
on a given shortest path P (x, y).

B. Canonical paths and p-sums

We define two kinds of p-sums:
• Type-I p-sums on separators,
• Type-II p-sums that stay within a subgraph G(α) for a

node α in the balanced separator hierarchy.
On the separator Z(G), define a binary interval tree I(r, u)

and I(r, v) on P (r, u) and P (r, v) respectively, similar to the
1D design in [3]. Each interval of the tree I(r, u) is a p-sum.
The tree I(r, v) is similar. For a segment P (z1, z2) within the
separator Z(G), the number of p-sum needed to calculate the
value of the segment is at most O(log |P (z1, z2)|). We do the
same on all separators in the hierarchy. The total number of
Type-I p-sum is O(n), where n is the number of vertices in
the graph G. Since any edge is on at most one separator, an
edge belongs to at most O(log n) Type-I p-sums.

The second family of p-sums is defined within a subgraph
G(α) for each node α in the hierarchy Φ. Since a subgraph
G(α) could be large, random sampling is used to selectively
calculate p-sum on some shortest paths in G(α).

Random Sample Hierarchy. Starting with all the nodes in
level 0, i.e., V0 = V , each node in level-i, Vi is promoted to
Vi+1 with probability 1/2 independently. The hierarchy has
the maximum level h and h = O(log n) with high probability.
Each node has a probability of 1/2i to be promoted to Vi.

Now, consider a subgraph G(α) in the separator hierarchy.
A shortest path of two nodes u, v in G(α) is a canonical path
if the following conditions are met.
• u, v ∈ Vi, with log n(α)− q ≤ i ≤ log n(α), for a value
q = log log n.

• On the shortest path P (u, v), no other vertices are in Vi.
It is possible that a shortest path P (u, v) is identified as
canonical paths for two indices i and j. In that case, only
one copy corresponding to the highest index is kept, which
is called the level of the canonical path. A Type-II p-sum is
defined for each canonical path.

C. Analysis of Type-II p-sum and edge sensitivity

Lemma 3.2. Given a subgraph G(α) for a node α in the
separator hierarchy Φ, the expected number of canonical paths
defined in G(α) is upper bounded by O(log2 n).

Proof: Given two nodes w, y in G(α), a path P (w, y) is a
canonical path at level i when both w and y are promoted
to Vi and the nodes on the shortest path between w, y are
not promoted to Vi. Suppose P (w, y) has length `. Denote by
Pri[w, y] the probability for this to happen; then:

Pri[w, y] =
1

2i
· 1

2i
· (1− 1

2i
)`−1 ≤ 1

22i
.

Summing up for all possible log n(α)− q ≤ i ≤ log n(α):

logn(α)∑
i=logn(α)−q

Pri[w, y] ≤ 22q

n(α)2

q∑
j=0

1

22j
= O(

22q

n(α)2
)

Since there are n(α)2 pairs of nodes in G(α), the total number
of canonical paths in G(α) is O(22q) = O(log2 n). �

Theorem 3.3. The total number of Type-II p-sums is
O(n log2 n) in G, where n is the number of vertices of the
planar graph G.

The proof comes from Lemma 3.2 and the fact that there
are O(n) nodes in the hierarchy Φ.

Next, we argue that each edge only contributes to
O(polylogn) p-sums as defined above.

Lemma 3.4. Each edge (u, v) stays on at most
O(log3 n log log n) p-sums on average.

Proof: Each edge (u, v) stays on only one separator. Thus
the number of Type-I p-sum that contains (u, v) is bounded
by O(log n).

Now, we bound the average number of p-sums that con-
tain (u, v) within one subgraph G(α). For that, we first
show that the total length of the p-sums defined in G(α)
is at most O(n(α) log2 n log log n). Thus one edge stays in
O(log2 n log logn) p-sums, on average. Since an edge only
stays in O(log n) nodes of Φ, the claim follows.

For a path P (w, y) denote by Li[w, y] the expected contri-
bution towards the expected total length of p-sum paths, for
index i. Recall ` is the length of path P (w, y).

Li[w, y] = Pri[w, y] · ` =
1

2i
· 1

2i
· (1− 1

2i
)`−1 · `
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We analyse two cases: If ` > 2i, we have

Li[w, y] ≤ 1

2i
· 1

2i
· (1− 1

2i
)2

i

· ` ≤ 1

22i
· 1

e
· `

Observe that ` ≤ n(α) and 2i ≥ n(α)/2q .

Li[w, y] ≤ 22q

n(α)2
1

e
· n(α) =

22q

e
· 1

n(α)
.

If ` ≤ 2i,
Li[w, y] ≤ 1

22i
· ` ≤ 1

2i
.

Therefore, the total length of p-sum paths is∑
w

∑
i

∑
y

Li(w, y)

=
∑
w

∑
i

( ∑
y,`≤2i

Li(w, y) +
∑
y,`>2i

Li(w, y)
)

Define I[` ≤ 2i] = 1 if ` ≤ 2i and 0 otherwise. Similarly,
define I[` > 2i] = 1 if ` > 2i and 0 otherwise.

The first term gives∑
w

∑
i

∑
y

I[` ≤ 2i] · 1

2i
≤
∑
w

∑
i

n(α)
1

2i
≤ 2n(α)2q

The second term gives∑
w

∑
i

∑
y

I[` > 2i]
22q

e
· 1

n(α)
≤
∑
w

∑
i

22q

e
= n(α)

q22q

e

Therefore, the total sum of the length of all Type-II p-sums
is in the order of O(n(α) log2 n log logn), thus each edge
stays on O(log2 n log log n) Type-II p-sums in one subgraph
G(α). Recall that each edge stays in at most O(log n) sub-
graphs corresponding to the nodes in the decomposition Φ.
This gives a bound of O(log3 n log logn) on the number of
p-sums that an edge contributes to, on average. �

The above bound is for the number of contributed p-sums
for each edge, on average. The worst-case bound depends a
lot on the graph structure. For example, if an edge is a bridge
between two large components (i.e., with high betweenness
centrality), it could contribute to a large number of p-sums.
Although, in reality, such edges are likely to be selected as
parts of separators and thus not contribute to many p-sums.

D. Answering Queries

Now we show that the pre-computed p-sums can be used
to answer queries.

Lemma 3.5. Each shortest path query can be answered by
using at most O(log n) p-sums.

Proof: This constructive proof identifies how to find O(log n)
p-sums to answer a query P (x, y).

Consider the separator Z(G), consisting of two shortest
paths P (r, u), P (r, v) and one edge (u, v). We first argue that
the path P (x, y) cannot visit a shortest path P (r, u) multiple
times. Assume otherwise, suppose the path P (x, y) leaves
P (r, u) at a vertex w and later visits P (r, u) at a vertex w′.

r

u v

x

y
z1

z2 z3

z4

(a) (b) (c)
Fig. 3. (a) The shortest path P (x, y) visits the separator Z(G) at most
twice. (b) Here, w events occur at σ and zero event at τ . As pσ crosses
e and c, θ(e) and θ(c) are updated to θ(e)− w and θ(c)− w respectively.
Therefore, with appropriate range orientation dθ(−σ) = w and dθ(τ) = 0.
(c) The Boundary operation on the counter-clockwise oriented faces produces
the edges enclosing the region with consistent orientation.

The shortest path from w to w′ shall precisely coincide with
P (r, u), since the shortest path from w to w′ is unique.

Therefore, the shortest path P (x, y) can be decomposed into
at most 5 segments (see Figure 3(a)) at vertices z1, z2, z3, z4
such that each segment stays either entirely in A(G) or B(G),
or entirely on the separator Z(G) (on P (r, u) or P (r, v)).

For the two segments P (z1, z2), P (z3, z4) on Z(G), we use
Type-I p-sum to calculate their contribution to the query. This
uses at most O(log n) Type-I p-sums.

Now we handle a segment entirely in A(G) or B(G). We
only explain how to handle P (x, z1). The other two cases are
similar.

Suppose P (x, z1) stays in A(G) with n1 vertices. n1 ≤
2n/3. On the shortest path P (x, z1), denote by the highest
level j such that there are nodes of P (x, z1) in Vj . If
log n1 − q ≤ j ≤ log n1, we identify a chain of vertices
w

(j)
1 , w

(j)
2 , · · · , w(j)

f ∈ Vj on P (x, z1) such that the segments
between consecutive pairs are Type-II p-sums of level j within
A(G). We call this chain a level j chain. Notice that this chain
may have only one vertex.

Apart from the level j chain, we are left with two shortest
paths P (x,w

(j)
1 ) and P (w

(j)
f , z1) at the two ends. We consider

level j − 1 and Vj−1 in the same manner. Recall that nodes
w

(j)
1 , w

(j)
f in Vj stays in Vj−1 as well, by our random sampling

hierarchy. We could identify two level j − 1 chains: one that
ends at w(j)

1 , and one that starts from w
(j)
f . Continue with j−2

until level log n−q. This way, we have a chain of p-sum with
level starting from log n1 − q, going up monotonically to j
and then going monotonically down to log n1− q. Before this
chain, there is a ‘head’ path P (x, b1) with the last endpoint
b1 on level log n1 − q. After this chain, there is a ’tail’ path
P (b2, z1) with b2 on level log n1 − q. On the head or tail
path, there cannot be interior vertices of level log n1 − q by
definition. Now we claim:
• The chain from b1 to b2 using p-sums of level log n1− q

to log n1 has at most log n p-sums, in expectation.
• The head and tail chains can be recursively handled

with p-sums defined in a subgraph G(α) with α being
a descendant of A(G) in Φ.

Now we prove the two claims. First, we want to show that
the total number of nodes on P (x, z1) with levels between
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log n1− q and log n1 is at most log n. This is an upper bound
on the number of p-sums from b1 to b2.

Take a node w on P (x, z1). The chance that w is promoted
to level log n1−q is 1/2logn1−q = 2q/n1. Recall that P (x, z1)
is inside A(G) with n1 vertices. Thus |P (x, z1)| ≤ n1. The
expected total number of nodes on levels between log n1 − q
and log n1 is

|P (x, z1)| · 1

2logn1−q
≤ n1 ·

2q

n1
= 2q = log n.

For the second claim, we only prove for a head chain
P (x, b1). The same applies for a tail chain. Recall that a head
chain P (x, b1) does not have any nodes of level k = log n1−q
(or higher). We argue that P (x, b1) cannot be too long.

Pr[|P (x, b1)| ≥ βn] ≤ (1− 1

2k
)βn ≤ (

1

e
)3·2

q−1β

Recall that we take q = log log n. Thus the right hand side
gives o(1/n). This says that there are at most 6 such head/tails
chains on the original path P (x, y) that will be recursively
handled, and they have length at most βn for a small β – say
just take β < 1/100. Therefore, the recursive function on the
number of p-sums for P (x, y) is

M(n) ≤ 6M(βn) + 5 log n.

Solving this recurrence gives us O(log n) p-sums. This finishes
the argument. �

Now, we can summarize the main results.

Theorem 3.6. On a planar graphG of n vertices in which each
edge carries a sensing reading. We can preprocess the graph G
with total storage O(n log2 n) such that we can answer range
query on any shortest path by querying O(log n) p-sums.

We add a noise of Lap(log n/ε) to each p-sum. And by the
differential privacy properties, we have the following theorem.

Theorem 3.7. The range query along any shortest path can
be answered with error O( 1

ε log3.5 n log logn · log 1
δ ) with

probability at least 1 − δ, with ε-differential privacy on any
event.

IV. RANGE QUERY ALGORITHMS USING p-SUM

In many practical scenarios, a 1D query path of interest can
be represented as a concatenation of several shortest paths in
the underlying planar subdivision. In the worst case, a path
with m edges contains m shortest paths, but often the number
is much smaller. For example, realistic mobility routes may
follow shortest paths between waypoints in the road network
and could be subject to ranges of queries. In such queries,
we can apply the algorithm in Lemma 3.5 separately for each
shortest path segment to get the following.

Lemma 4.1. A range query on a 1D path that is concatenation
of k shortest paths can be answered using at most O(k log n)
p-sums.

As each p-sum is subject to Lap( logn
ε ) noise, we have the

following error bound.

Theorem 4.2. A range query on a 1D path that is con-
catenation of k shortest paths can be answered with error
O( 1

ε

√
k log3.5 n log logn log 1

δ ) with probability at least 1 − δ
with ε-differential privacy on any event.

2D Range Queries Using Discrete Differential Forms. In
many natural settings, the events occur at the faces of the
administrative, or city block-wise planar subdivisions of the
domain, G and the query ranges of interest are the sets of faces
U ⊆ F . In practical applications, usually the range boundaries
can be represented as a concatenation of several shortest paths
in G.

Here, we summarize a technique proposed in [25] to reduce
the query on a 2D range to a query on its 1D range boundary
using concepts from discrete differential forms. Following
this reduction, all the algorithms and results discussed above
applies to 2D range queries.

We assume each face in G is consistently orientated in
counter-clockwise direction [17] and the edges inherit direc-
tion from the faces. The boundary ∂U of a set of faces U ⊆ F
is the set of edges that separates U from the rest of the faces
F\U (Figure 3(c)).

Let’s define a function dθ on a face, σ ∈ F such that
dθ(σ) = w, if w events occurred in σ. Therefore, the number
of events inside the query range U is

∑
σ∈U dθ(σ). Consider

another function, θ called differential 1-form, on the edges of
G with the property that θ(−e) = −θ(e) for an edge e . This
can be extended to dθ using the relation dθ(σ) = θ(∂σ) and
further to dθ(U) = θ(∂U).

The implication of this discrete differential form is that the
count at any face is incorporated into the count of any cycle
with the face in its interior. Thus, given a query for dθ in a
query range U , it suffices to compute θ along its boundary.
In [25], θ is computed by constructing a spanning tree on
the dual graph of G, and for each face, adding its count to
the edges on the path to the exterior face. Other ideas of
differential form constructions for geospatial data analysis are
discussed in [13].

To support ε differential privacy, the differential form con-
struction can be amended with a Laplace noise addition to the
edges of the planar graph with p-sum construction on shortest
paths. Following which, the 1D range query can be applied
to the range boundaries and analogous results will apply as
Theorem 4.2. A caveat here is that the noise requirement can
be sensitive to the constriction of the differential form. A face,
whose path to the exterior face is long imposes greater noise
requirement.

V. DISTRIBUTED OPERATION

Let’s consider that as a part of the infrastructure, p-sum
structure is initialized and stored in a distributed way. A node
in the interval tree, I(u, v) covering P (u, v) stores the noisy
event count for the range P (u, v). A leader is selected among
the nodes in P (u, v) using a leader election algorithm to store
the information for I(u, v). A node stores this information for
all the p-sums it is part of.
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When the aggregator knows the canonical paths and the p-
sum structure, it can directly ask the suitable leaders for the
counts.

When the aggregator does not know the canonical paths and
p-sum hierarchy, it requires a distributed cooperation from the
local devices. The aggregator sends a query P (x, y) to all
the nodes in P (x, y) and asks for Type I p-sums. As no two
Type I p-sums overlap, each node u ∈ P (x, y) can uniquely
decide whether it contains a p-sum that overlaps with P (x, y).
Suppose, the overlap is S. If the p-sum range covered by the
node u is contained in S, but the range of its parent is not
contained in S, then u responds to the aggregator. This can
be decided either by inter-sensor communication or storing
the range of the parent at each node without any inter-sensor
communication.

Next, the aggregator queries remaining query segments for
Type II p-sums. Along a shortest path, no two canonical paths
can overlap unless one of them is a subpath of the other.
Therefore, each node again can uniquely decide the maximal
Type II p-sum it is part of that overlaps with the query and
apply the above protocol to distributedly find the nodes that
contain relevant data to answer a query.

VI. EXPERIMENTS

This section evaluates the privacy mechanisms with em-
pirical data to show that they preserve utility for practical
purposes. Highlights of the results are the following.
• Both 1D and 2D range query schemes outperform com-

peting mechanisms in terms of query accuracy.
• Although the p-sum construction aims to optimize perfor-

mance for shortest paths, 1D queries preserve accuracy
even when the query paths are not shortest paths.

• The p-sum structure is both time and space efficient.

A. Experimental Setup

Dataset. Our experiments use real world road network data
(Figure 4(a)) in Porto from openstreetmap3. The trajectories
(Figure 4(i)) are collected also from Porto4. They are par-
titioned according to the trips and collected over 6 months;
we ignore the temporal information in the trajectories for our
purposes.

Utility measure using range queries. Range queries are
fundamental to mining and learning methods and thus used
here as the measure of utility. Each experiment uses 1000
uniformly chosen query ranges. If the count of events in a
query range with η events is estimated as η̃, then the error
is ξ = |η−η̃|

η . The relative error is symmetric with respect to
addition, i.e., estimating η + ∆ and η −∆ incur same error.

Creating the graph G. For the experiments on 1D queries,
the graph, G, is considered to be the road network as given in
Openstreetmap. For 2D range queries, the primal graph (G)
is created using Delaunay triangulation of 4000 random points

3https://www.openstreetmap.org/
4https://www.kaggle.com/c/pkdd-15-predict-taxi-service-trajectory-i

in the domain. The range boundary of the 2D range is defined
using the edges in G.

Creating hierarchical decomposition. Whereas, Section III
describes a general algorithm for decomposition, here we
implement a simpler mechanism as the domain (Figure 4(a)) is
well shaped. We alternatively choose a separator in horizontal
and vertical direction that goes through the middle of the
current partition of the graph. Then build separators using
shortest paths on the graph.

Creating p-sum and answering query. Noisy counts are pre-
computed and stored at the p-sum nodes. A node, u, can be
part of multiple p-sum paths and they all contribute to the
sensitivity of u. A p-sum path of length l contributes to the
sensitivity of u by log l, this is due to the p-sum structure –
changing the count at u affects log l partial sums in the tree.
Therefore, the sensitivity of u is log l1 + log l2 + · · ·+ log lz ,
if u is part of z p-sums with lengths l1, l2, etc. An internal
node in a p-sum tree has sensitivity as the maximum of its
children.

Given a query path q = u, · · · , v a greedy approach is
implemented to find the component p-sums in the following
way. Starting from an end point u or v, the largest p-sum
covering q is chosen and then applied recursively on the
remaining part to be covered in q. The total noise in the output
is the sum of the pre-computed noisy counts at the canonical
p-sum nodes.

B. Range query along 1D paths

Taxi pickups are considered as events on the road segments
and they are mapped to the nearest edge in G. Given a path
P , a query asks for the count of the pickups along P .

1) Query on 1D shortest paths: When P is a shortest path
in G, the range queries are accurate (Figure 4(b, c)). With
increasing ε the privacy decreases and error in the rage query
also decreases. With increasing q, the number of canonical
paths increases and so, the error decreases.

2) Query on 1D paths: In many applications, the query
path may not be a shortest path. Figure 4(f, g), show that
the range queries are accurate even when the P comes from
the trajectories in Figure 4(i). Note that these trajectories do
not always follow the shortest path as shown in Figure 4(e).
Therefore, our hierarchical constructions are practically more
general than answering only shortest path queries.

3) Comparing with baseline: Local privacy algorithm adds
noise to the value at each edge. Figure 4(d, h) show that the
p-sum mechanism preserves better utility than local privacy
mechanism for 1D query ranges as shortest paths and trajec-
tories respectively.

C. 2D range query

Here, the events are again taxi pickups. They are considered
to occur at the faces of the triangulation graph and the query
is to count the number of pickups at a given 2D range.
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Fig. 4. (a) A part of road-map (latitude−[41.1541◦N, 41.1698◦N ] and longitude−[8.6321◦W, 8.6014◦W ]) of size roughly 3km × 3km from Porto. It
contains 3848 nodes and 4295 edges. There are 5919 taxi trip trajectories in the same region (i). We fix ε = 1 and q = 4 suitably. 1D range queries: (b, c,
d) show results for queries along shortest paths and (f, g, h) show results along the trajectories in (i). (b, f) With increasing ε the error decreases. (c, g) With
increasing q the error decreases. Although with increasing q the number of p-sum increases (o), but the number of composing p-sum for a query decreases(q),
and thus overall error decreases. (d, h) Our p-sum mechanism preserves better utility than Local privacy. Although the p-sum construction is for shortest path
queries, they are produce accurate range query results along real trajectories in (i). These trajectories often follow longer paths than the shortest paths in road
network as shown in (e). An example 2D range is shown in (i). (j, k) Privacy-utility tradeoffs are consistent with 1D queries. (l) The p-sum mechanism
achieves better utility for 2D queries than quad tree based mechanism and local privacy mechanism on the range boundary. (m) The pre-processing time
naturally increases with graph size, but remains small for large graphs. The pre-processing time for q = 8 is larger as more canonical paths are created.
However, for smaller values of q, the time stays similar. (n) Time to query shortest path with p-sum is the same for graphs of different sizes which shows that
once p-sums are created, the query time does not depend on the graph size. (o) For all values of q, more than 90% of the cases an edge is part of less than
20 canonical paths. So, each edge needs small amount of storage overhead to store reference to canonical paths. With increasing q the overhead naturally
increases as more canonical paths are created. (p) The number of canonical pieces to compose a query path is smaller than the number of edges in the query
path. Here, q = 2. (q) For larger values of q, more canonical paths are created and therefore, it needs fewer pieces to compose a query path. (r) The hop
lengths of canonical paths decrease with increasing q because with increasing q more canonical paths are created of smaller lengths (at lower levels).

1) Choosing query ranges: These experiments choose tri-
angular ranges, where the triangle edges are defined using
shortest paths in G and the vertices are chosen randomly
from the nodes in G. Figure 4(i) shows an example of such a
triangle. Varying ε and q, p-sum mechanism produces expected
privacy-utility trade-off (Figure 4(j, k)).

2) Comparing mechanisms: The quadtree mechanism ini-
tially builds a quad-tree on the faces of G by representing
each face as the mean of its vertices and then samples noise
from Lap(log n/ε) at each node. Given a query range, it adds
the noise at the canonical range nodes to get the total noise in
the output. The local privacy mechanism applies local privacy
mechanism on the boundary of the range. Figure 4(l) shows
that p-sum preserves better privacy than both of them.

D. Efficiency of hierarchical mechanism

1) Time complexity: Figure 4(m, n) show that both the time
to pre-process and query are small for large graphs. With
increasing q, the pre-processing time increases as the number
of canonical paths increases; however, the query time remains
similar for different graph sizes.

2) Space complexity: An edge needs to store the canonical
paths it is part of. Figure 4(o) shows that this number is low for
all the edges. Again the number of canonical pieces composing

a shortest path is also low (Figure 4(p, q)), and the lengths of
the canonical paths is low (Figure 4(r)) as well, therefore the
size of the partial sum structures are not large.

VII. CONCLUSION

Using carefully constructed p-sum structures, this paper
proposes an efficient and differentially private mechanism to
answer queries for 1D and 2D ranges on planar subdivisions
of spatial domain. We can easily extend this mechanism to the
spatio-temporal dimension by considering a stream of events
at each sensor and apply the continuous release mechanism
in [3] to each stream. An example adaptation would be to
maintain a temporal partial sum at each p-sum we construct.

Our work leaves an open question of range query on
mobile objects. This poses a harder challenge as the continuity
property of mobility makes the events at nearby edges or faces
correlated. Protecting privacy of data with correlation is a
much harder problem as the correlation could be exploited
by an attacker [24]. This remains future work.
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