

Edinburgh Research Explorer

Publishing Asynchronous Event Times with Pufferfish Privacy

Citation for published version:
Ding, J, Ghosh, A, Sarkar, R & Gao, J 2022, Publishing Asynchronous Event Times with Pufferfish Privacy.
in Proceedings of The 18th International Conference on Distributed Computing in Sensor Systems 2022.
The 18th Annual International Conference on Distributed Computing in Sensor Systems, 2022, Los
Angeles, California, United States, 30/05/22.

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Proceedings of The 18th International Conference on Distributed Computing in Sensor Systems 2022

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 10. Jun. 2022

https://www.research.ed.ac.uk/en/publications/1fee4ca3-8da4-45b9-9031-06921dd1550a

Publishing Asynchronous Event Times with
Pufferfish Privacy

Jiaxin Ding*
Shanghai Jiao Tong University

Abhirup Ghosh*
University of Cambridge

Rik Sarkar
University of Edinburgh

Jie Gao
Rutgers University

Abstract—Publishing data from IoT devices raises concerns
of leaking sensitive information. In this paper we consider the
scenario of publishing data on events with timestamps. We
formulate three privacy issues, namely, whether one can tell if an
event happened or not; whether one can nail down the timestamp
of an event within a given time interval; and whether one can
infer the relative order of any two nearby events. We show that
perturbation of event timestamps or adding fake events following
carefully chosen distributions can address these privacy concerns.
We present a rigorous study of privately publishing discrete event
timestamps with privacy guarantees under the Pufferfish privacy
framework. We also conduct extensive experiments to evaluate
utility of the modified time series with real world location check-
in and app usage data. Our mechanisms preserve the statistical
utility of event data which are suitable for aggregate queries.

I. INTRODUCTION

With the proliferation of Internet of Things, huge volume
of data is generated by densely deployed sensing devices,
from fitness trackers for health care, appliances for smart
homes, to traffic sensors for urban transportation, etc. [5],
[12]. In the process of collecting and sharing the sensing data,
protecting user sensitive information has become an important
research topic. In this paper, we consider the issue of privacy
in publishing timestamps of sensing events.

In the typical setting of sensing, timestamped events are
sensed either by users’ personal devices such as mobile
phones, or by infrastructures such as RFID sensors, etc.
There are two possible ways to sense and publish events
(shown in Figure 1) depending on whether user informa-
tion is associated. First, events are sensed and labeled with
the users’ identification information. Users may leave event
traces directly with their own devices, e.g., tweeting check-in
events. Connection events of mobile devices can be sensed
and recorded by cellular towers, while users’ identification
information is obtained by the phone numbers of the connected
devices. Second, unlabeled events are recorded and published
by infrastructures, where association between users and events
are unknown or hidden. For example, a Wi-Fi access point can
detect connection events of mobile devices, while user IDs can
be hidden by randomized MAC addresses.

In these scenarios, there are different privacy risks. In
a labeled sequence of events, the events of the same user
can reveal the user’s private information, such as habits or
daily routines. For example, many of us check the weather

*Equal contribution. Jiaxin Ding is the corresponding author. Corresponding
Email: jiaxinding@sjtu.edu.cn

app before going out. In the real dataset of LiveLab [27],
we observe daily periodicity for users accessing the weather
app. We analyze the time series of the users opening the
weather app by Fourier transformation, where the highest
spectral energy corresponding to the most dominant periodicity
pattern of users. In Figure 2(a) we demonstrate an example
of periodicity analysis of one user, where there is a clear
energy peak at 24 hours, meaning that the user has the habit
of opening the weather app at the same time every day. Such
information can be used to predict user behavior.

Besides, the order of the events produced by users can be
used to infer sensitive information. For example, the order of
the apps used can be correlated with user activities [29], e.g.,
opening a messaging app followed by a food review app could
mean planning to dine out with friends. Moreover, suppose an
adversary has accessed to the logs of website visits without
knowing the user identity from compromised network routers
observing that a service was accessed at exact times t1, t2 and
t3, and now gains information that a user requested a service
shortly before each time. The adversary can then associate the
user with the service indicating that the user is accessing that
service. Such timing attacks can compromise the anonymity
of mixing networks like Tor [20].

An unlabeled sequence can also leak privacy. For example,
the adversary suspects that user u in Fig. 1(b) has checked in
within a small time window. The presence of an event in this
interval strongly suggests that the adversary’s information is
probably correct. Such accessory knowledge of the adversary
can make privacy preserving even more challenging.

The objective in this paper is to protect users from such
inferences. A perfect protection of user information can refrain
from publishing data or publish irrelevant data - in either case,
data becomes useless [17]. Thus our approach is statistical,
where useful information is published, but the adversary
cannot infer user activities with high confidence.

Our Contributions. A natural and simple way to sanitize
event timestamps is to perturb the reported time by random
noise. However, theoretically quantifying the privacy achieved
by such a mechanism is highly non-trivial and is the main
focus of this paper. Section II shows that existing differential
privacy based algorithms [10], [7] operate in synchronous
rounds, and over long duration of time, they accumulate
excessive noise, which overwhelms the data. In distributed
sensor databases, asynchronous operations are particularly

Time W

u uz

Time W

Fig. 1. Data publishing scenarios. (a) Events are labeled with users’
identification information. (b) Only the presence of events are published, and
events are unlabeled. Window W is adversary’s hypothesis of when an event
of interest may have taken place.

desirable, since synchronization is non-trivial to maintain, and
the frequency requirements can vary by systems.

We consider the asynchronous settings and formulate the
privacy concerns formally, using the Pufferfish privacy, a
revised differential privacy framework, considering and incor-
porating the fact that the adversary may have approximate
prior knowledge, e.g., an adversary may have a suspicion
(based on external information) that an event has taken place
at a time window W . The overall model of operation and
the adversarial knowledge is considered in Section II-D. The
fundamental problems we address are:

1) For unlabeled events: protect the presence of an event
within an interval.

2) For labeled events: protect an event time, so that the
timing cannot be inferred beyond a given precision ∆
and protect relative order of nearby events.

For task (1) of protecting the presence of an event, we
add fake events at a suitable rate and remove a subset of real
events. Similar fake events (or messages) have previously been
used to enhance privacy in anonymity networks [23], but our
analysis is the first to show statistical privacy guarantee for
these methods. Adding random noise to the event timestamps
with a limited scale can solve both the problems in (2). An
example can be found in Figure 2(b), after applying a saniti-
zation method described in this paper, the periodic behaviour
in Figure 2(a) has vanished indicating that the precise time
of checking the weather app is no longer so predictable. We
derive rigorously the level of noise required to achieve ε-
Pufferfish privacy for proposed mechanisms (Section III). In
experiments (Section IV), we measure the effectiveness of
the sanitized data and demonstrate that the utilities are well
preserved with three real world datasets.

II. STATISTICAL PRIVACY AND CHALLENGES IN
PUBLISHING EVENT TIMESTAMPS

Differential privacy is the most popular statistical privacy
framework and has been used to protect event timestamps as
well. Thus, this section starts with an overview of statistical
and differential privacy followed by the problem of applying
such framework to the problems at hand. Readers familiar with
the basics may want to skip to Subsection II-B.

(a) (b)
Fig. 2. Periodicity analysis on when a user opens weather app. (a) Fourier
periodogram of original time series shows clear periodicity of 24 hours - the
user checks the app at the same time every day. (b) After events are sanitized
using our Mechanism 2 in III-B with ε = 1,∆ = 24hr, the periodic pattern
vanishes.

A. Differential Privacy

Consider a dataset, D containing sensitive attributes. Even
without direct access to D, an adversary may be able to infer
the sensitive information through queries. The central issue
in statistical privacy is to find balance between making such
inference difficult and preserving utility in the aggregate. Sta-
tistical privacy mechanisms propose randomized methods to
make query answers almost equiprobable for different values
of sensitive attributes and quantify privacy by the probabilistic
similarity of query answers. For example, Differential Privacy
protects presence of an item in D as follows.

Definition 1 (Differential Privacy). Suppose D′ is a dataset
that is different from D in the presence of a single element.
Then randomized algorithmA is called ε-differentially private,
if for all such pairs (D,D′) and all w ∈ Range(A), the
algorithm A satisfies: P (A(D)=w)

P (A(D′)=w) ≤ e
ε.

Differentially private algorithms depend on sensitivity of a
query function f , defined as the maximum possible change to
f(D) due to presence or absence of any single element, for-
mally denoted as ∆f = max |f(D)− f(D′)|. For a counting
query, ∆f = 1, since a single element can change the count
only by 1. The noise we need to add to obscure the presence
of an element is proportional to the sensitivity.

A ε-differentially private Laplace mechanism [7], [6] an-
swers a query by A(D) = f(D) + ξ where ξ ∼ Lap (b) is a
random number drawn from the Laplace distribution of mean
µ = 0 and variance 2b2 = 2(

∆f

ε)2. The probability density at
x as Lap (x;µ, b) = 1

2be
− |x−µ|b .

B. Publishing events using local differential privacy

An extension of differential privacy, called local differential
privacy [2] supports publishing data by adding noise to the data
itself instead of the results of a query. For publishing events
such framework needs synchronous rounds – at each round
r, the count c(r) of events is published. A particular variant
of this problem was considered by [4] where in each round
there is either zero or one event. A basic method described
there is to publish the count with a Laplace noise: c(r) + ξ,
where ξ ∼ Lap

(
1
ε

)
. In any individual round, the presence or

absence of an event is obscured (sensitivity is 1) by the noise.
The difficulty of this method is that over time, the noise

builds up. Over T rounds, T random samples of ξ are added,

E
v
e
n
t

0 5 10
Time

5

10

E
v
e
n
t

c
o
u
n
t

E
v
e
n
t

0 5 10
Time

5

10

E
v
e
n
t

c
o
u
n
t

(a) (b)

Fig. 3. The performance of synchronized privacy method [4] is sensitive to
the sampling rate of discrete time rounds. The method adds Lap(1) noise to
the count at each time slot. The error introduced due to sanitization is the
disagreement between the cumulative event counts for original (black) and
sanitized (blue). (a) With low sampling frequency, it adds less noise (less
number of Lap(1)) and preserves high utility. (b) High sampling frequency
accumulates more noise from the empty rounds, making the utility worse. In
both cases the top panel shows the events and the time slots.

and the number of events can deviate rapidly from the true
count – see Figure 3 as an example. The problem becomes
more severe when events are sparse and there are many rounds
without events. In Figure 3 there are same number of events,
while the series in Figure 3(b) is sampled more frequently
and thus there are more empty rounds. The noise added in the
empty rounds adds to inaccuracy and dominates the true total
count eventually in Figure 3(b).

In practice, the event density and required temporal reso-
lution can be unknown or vary by applications – e.g. human
behavior in seconds, versus network measurements in millisec-
onds. Therefore, these mechanisms are unsuitable in real world
applications. Thus, we would like to avoid rigid synchronous
rounds, and use an asynchronous setup, where the published
timestamp of an event can be a real number. For this purpose,
we use a more versatile framework called Pufferfish privacy
which we introduce in the following section.

C. Pufferfish Privacy

The Pufferfish Privacy framework [18] allows us to define
any set of facts to be regarded as a secret, and protect them
probabilistically. To define the Pufferfish privacy, we first
introduce the following sets.
• the set of secrets S to be protected within dataset X ,
• how the secrets shall be protected against each other: by

specifying discriminative pairs Q of secrets,
• the prior knowledge of the adversary, written as a set Θ of

prior distributions, essentially representing how the data
is generated.

A discriminative pair can be written as (si, sj) ∈ Q, where si
and sj are elements of S, and represents two facts that we do
not want the adversary to be able to distinguish.

A randomized mechanism M satisfies ε-Pufferfish privacy
if for si, sj ∈ S, (si, sj) ∈ Q, θ ∈ Θ and w ∈ Range(M)
the following holds:

e−ε ≤ P (M(X) = w|si, θ)
P (M(X) = w|sj , θ)

≤ eε (1)

assuming P (si|θ) 6= 0 and P (sj |θ) 6= 0. Similar to differential
privacy, a smaller ε implies greater privacy.

It implies that the truth of si versus sj does not make
a significant difference to the probability of observing any
particular output w. Therefore, when w is in fact observed,
the adversary does not gain any significant certainty whether
si or sj is true, compared to what he already knew based
on prior knowledge θ. As we will see in the next section, the
generic nature of secrets and discriminative pairs lets us define
privacy for properties like event ordering and event times.

The prior Θ represents the underlying distributions generat-
ing the data, for example, the vehicle density at a crossing at
night, morning or rush hour, or the distribution of certain apps
being used on a mobile phone. In the Pufferfish framework,
following usual conventions of privacy techniques, we assume
that any prior knowledge such as the generating distribution
is public and known to the adversary, but the precise times of
actual events are not known.

D. Model

We are interested in publishing data continuously. Events
can be assumed to be published in batches, for example,
once in an hour or a day. The sensors send their data to an
aggregator service such as a cloud server, which then publishes
or uses the data. Labeled events are those that carry user IDs
or other attributes that can potentially uniquely identify the
events. Unlabeled events are those that carry no such attributes
or carry same attributes making them indistinguishable.

All algorithms in this paper can be applied locally, i.e., the
device detecting the events can sanitize or defer the publication
of the event prior to sending to the aggregator. This approach
has the advantage that the data transmitted is guaranteed to be
private, since statistical sanitizations are known to be immune
to post processing [10]. Once the data has been modified by
the mechanism, it carries the privacy guarantee irrespective of
how the data is used. This is useful in sensor data that may
be shared with various public and private organizations.
Utility. To ensure that the sanitized data is useful, we measure
its utility in terms of accuracy of range queries. Given a time
interval T , the range query asks for the number of events
recorded inside T . The motivation for using range queries as
a test of utility is that it is akin to preserving the large scale
probability distribution that generates the data. If the count
of events in different ranges is preserved, it implies that the
statistical properties of data are preserved. The mechanisms
here are designed with range queries in mind as, in general it
is impossible to preserve utility of arbitrary queries [17].

E. Adversary Model

We assume that the adversary can observe the published
events. The adversary may or may not be able to compromise
the communication channel or aggregator – this is irrelevant to
us, since we aim to create algorithms with local privacy. We
do, however, assume that the adversary cannot compromise
the sensors themselves to observe events as they happen.
As is standard in security and privacy, we assume that the
privacy algorithms and parameters are known to the adversary.
However, the random choices – such as the random numbers

generated during an execution are not known. Under these
capabilities of the adversary, we consider the data protection
problems stated in Section I.

III. PRIVACY MECHANISMS

In this section, we discuss how to achieve statistical privacy
of publishing an event timestamp for the problems discussed
in Section I. In some cases the detailed technical proofs are
replaced by their sketches in the interest of space.

A. Problem 1: Protecting existence of unlabelled events

Given an unlabeled set of event timestamps, here the ad-
versary wants to confirm the existence of an event in a ∆
sized interval I . For example, the adversary has the question:
I think someone checked in at the venue between 12:00 and
12:05 (I), is this fact confirmed in the data? In the Pufferfish
model, the secret can be defined as s := (∃E : t ∈ I) –
representing the fact that some event E has occurred in the
small neighborhood I of size ∆. The discriminative pair is
(s,¬s), where ¬s means that no event has taken place in I .
We model an unlabeled event sequence as a non-homogeneous
Poisson process – an event sequence with varying rates.

Definition 2 (Non-homogeneous Poisson Process). In a non-
homogeneous Poisson process defined over an interval A with
intensity function λ : A → R≥0, the number of events
X(B) in any subinterval B of the domain follows a Poisson
distribution: P (X(B) = K) = e−Λ(B) · Λ(B)K

K! , where
Λ(B) =

∫
B
λ(t) dt is called the mean rate in B.

The intensity function λ(t) can be estimated using density
estimation methods. By using a function λ(t) that may vary
in time, the Poisson process can be used to model almost any
desired distribution of events; see Figure 4 for an example.

Time t
<latexit sha1_base64="btWuKJH9/rrCxCKL5tGKBdwWU5A=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48t2FpoQ9lsN+3azSbsToQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IJHCoOt+O4W19Y3NreJ2aWd3b/+gfHjUNnGqGW+xWMa6E1DDpVC8hQIl7ySa0yiQ/CEY3878hyeujYjVPU4S7kd0qEQoGEUrNbFfrrhVdw6ySrycVCBHo1/+6g1ilkZcIZPUmK7nJuhnVKNgkk9LvdTwhLIxHfKupYpG3PjZ/NApObPKgISxtqWQzNXfExmNjJlEge2MKI7MsjcT//O6KYbXfiZUkiJXbLEoTCXBmMy+JgOhOUM5sYQyLeythI2opgxtNiUbgrf88ipp16reRbXWvKzUb/I4inACp3AOHlxBHe6gAS1gwOEZXuHNeXRenHfnY9FacPKZY/gD5/MH4XeM/A==</latexit>

�(t)
<latexit sha1_base64="r1HZx/iJlaWl93P4GOK1+pvZqa4=">AAAB8XicbVDLSsNAFL2pr1pfVZdugkWom5JUQZdFNy4r2Ae2oUwmk3boZBJmboQS+hduXCji1r9x5984bbPQ1gMDh3POZe49fiK4Rsf5tgpr6xubW8Xt0s7u3v5B+fCoreNUUdaisYhV1yeaCS5ZCzkK1k0UI5EvWMcf3878zhNTmsfyAScJ8yIylDzklKCRHvvCRANSxfNBueLUnDnsVeLmpAI5moPyVz+IaRoxiVQQrXuuk6CXEYWcCjYt9VPNEkLHZMh6hkoSMe1l842n9plRAjuMlXkS7bn6eyIjkdaTyDfJiOBIL3sz8T+vl2J47WVcJikySRcfhamwMbZn59sBV4yimBhCqOJmV5uOiCIUTUklU4K7fPIqaddr7kWtfn9ZadzkdRThBE6hCi5cQQPuoAktoCDhGV7hzdLWi/VufSyiBSufOYY/sD5/AOCHkGQ=</latexit>

Fig. 4. Event sequence modeled as non-homogeneous Poisson process. Larger
rate λ(t) corresponds to greater density of events.

In a Poisson process, roughly speaking, the expected interval
between events is 1/λ(t). If ∆� 1/λ(t), then there are likely
to be multiple events in I , and presence of an event is not
informative for the adversary. However, when ∆ ≤ 1/λ(t),
the adversary has fairly accurate information of the event’s
possible time compared to the local density of events, and
other events are unlikely in the interval. Thus, a strong
adversary with small ∆ can isolate the event – and have
reasonable confidence that any event in the interval is the
one of interest. Therefore, we assume that the lengths of
the intervals of the adversary’s interests are reasonable with
respective to the event rates, with bounded numbers of events
in expectation. We consider the interval I whose event density
is bounded by a lower bound c and an upper bound c′, i.e.,
λ =

∫
t∈I λ(t)dt ∈ [c, c′]. Note that a sensor can estimate the

λ(t) by counting the number of events at the latest unit interval
and we assume this to be global knowledge.

Mechanism 1: Given a real event sequence, remove each
event with probability p = 1

c′ ln(e−ε(ec
′ − 1) + 1) to obtain

a sequence SR. Generate a fake event sequence, SF with
Poisson event rate Λ(t) = λ(t)

c ln(1 + e−ε). The published
events are time ordered union of SR and SF .

The greater the rate of this Poisson process is, the greater
the possibility becomes, that one or more fake events will be
present in the interval I , and thus the adversary cannot be
certain of the presence of a true event (See Figure 5). Further,
stochastic deletion of real events stops from inferring whether
an event exists after observing a published event or not within
a very small interval. However, a legitimate user knowing the
exact time of a real event can find it with probability 1 − p,
which is useful in provenance applications [26]. Also note that
if the deletion probability, p → 1, stronger privacy (ε → 0)
is guaranteed, but, the utility gets significantly reduced. The
deletion probability reflects the tradeoff between the privacy
protection and utility of the event sequences.

Time t
<latexit sha1_base64="btWuKJH9/rrCxCKL5tGKBdwWU5A=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48t2FpoQ9lsN+3azSbsToQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IJHCoOt+O4W19Y3NreJ2aWd3b/+gfHjUNnGqGW+xWMa6E1DDpVC8hQIl7ySa0yiQ/CEY3878hyeujYjVPU4S7kd0qEQoGEUrNbFfrrhVdw6ySrycVCBHo1/+6g1ilkZcIZPUmK7nJuhnVKNgkk9LvdTwhLIxHfKupYpG3PjZ/NApObPKgISxtqWQzNXfExmNjJlEge2MKI7MsjcT//O6KYbXfiZUkiJXbLEoTCXBmMy+JgOhOUM5sYQyLeythI2opgxtNiUbgrf88ipp16reRbXWvKzUb/I4inACp3AOHlxBHe6gAS1gwOEZXuHNeXRenHfnY9FacPKZY/gD5/MH4XeM/A==</latexit>

�(t)
<latexit sha1_base64="r1HZx/iJlaWl93P4GOK1+pvZqa4=">AAAB8XicbVDLSsNAFL2pr1pfVZdugkWom5JUQZdFNy4r2Ae2oUwmk3boZBJmboQS+hduXCji1r9x5984bbPQ1gMDh3POZe49fiK4Rsf5tgpr6xubW8Xt0s7u3v5B+fCoreNUUdaisYhV1yeaCS5ZCzkK1k0UI5EvWMcf3878zhNTmsfyAScJ8yIylDzklKCRHvvCRANSxfNBueLUnDnsVeLmpAI5moPyVz+IaRoxiVQQrXuuk6CXEYWcCjYt9VPNEkLHZMh6hkoSMe1l842n9plRAjuMlXkS7bn6eyIjkdaTyDfJiOBIL3sz8T+vl2J47WVcJikySRcfhamwMbZn59sBV4yimBhCqOJmV5uOiCIUTUklU4K7fPIqaddr7kWtfn9ZadzkdRThBE6hCi5cQQPuoAktoCDhGV7hzdLWi/VufSyiBSufOYY/sD5/AOCHkGQ=</latexit>

⇤(t)
<latexit sha1_base64="1wF+Ghab4Zntd5CEPeNuTvJE1Zw=">AAAB8XicbVDLSsNAFL3xWeur6tJNsAh1U5Iq6LLoxoWLCvaBbSiTyaQdOpmEmRuhhP6FGxeKuPVv3Pk3TtsstPXAwOGcc5l7j58IrtFxvq2V1bX1jc3CVnF7Z3dvv3Rw2NJxqihr0ljEquMTzQSXrIkcBeskipHIF6ztj26mfvuJKc1j+YDjhHkRGUgeckrQSI+9OxMNSAXP+qWyU3VmsJeJm5My5Gj0S1+9IKZpxCRSQbTuuk6CXkYUcirYpNhLNUsIHZEB6xoqScS0l802ntinRgnsMFbmSbRn6u+JjERajyPfJCOCQ73oTcX/vG6K4ZWXcZmkyCSdfxSmwsbYnp5vB1wximJsCKGKm11tOiSKUDQlFU0J7uLJy6RVq7rn1dr9Rbl+nddRgGM4gQq4cAl1uIUGNIGChGd4hTdLWy/Wu/Uxj65Y+cwR/IH1+QOvB5BE</latexit>

I<latexit sha1_base64="NZxCM2oWW6O9Zr0iSo5O1iB3Lic=">AAAB6XicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj0orcq9gPaUDbbSbt0swm7G6GU/gMvHhTx6j/y5r9x0+agrQ8GHu/NMDMvSATXxnW/nZXVtfWNzcJWcXtnd2+/dHDY1HGqGDZYLGLVDqhGwSU2DDcC24lCGgUCW8HoJvNbT6g0j+WjGSfoR3QgecgZNVZ6uCv2SmW34s5AlomXkzLkqPdKX91+zNIIpWGCat3x3MT4E6oMZwKnxW6qMaFsRAfYsVTSCLU/mV06JadW6ZMwVrakITP198SERlqPo8B2RtQM9aKXif95ndSEV/6EyyQ1KNl8UZgKYmKSvU36XCEzYmwJZYrbWwkbUkWZseFkIXiLLy+TZrXinVeq9xfl2nUeRwGO4QTOwINLqMEt1KEBDEJ4hld4c0bOi/PufMxbV5x85gj+wPn8AdSgjOU=</latexit>

Fig. 5. A set of fake events (shown in grey) added at rate Λ(t). Interval I
now contains fake events, making the adversary uncertain about presence of
true events.

To infer the existence of an event in interval I , the adver-
sary’s prior knowledge, θλ contains the real event intensity
λ =

∫
t∈I λ(t)dt ∈ [c, c′], and correspondingly fake event rate

Λ =
∫
t∈I Λ(t)dt, Λ ≥ λ

c ln(1 + e−ε) ≥ ln(1 + e−ε).

Theorem 1. With fake event rate Λ(t) ≥ λ(t)
c ln(1 + e−ε)

and removing probability p = 1
c′ ln(e−ε(ec

′ − 1) + 1), the
Mechanism 1 provides ε-Pufferfish privacy for existence of
events in any interval I , such that λ =

∫
t∈I λ(t)dt ∈ [c, c′].

Proof. Let η be the situation that at least an event is seen in a
interval I in the published stream. The probability that no fake
event is generated in the interval I is e−Λ, the probability that
no real events is published is e−λ(1−p), and the probability that
there is no real event in I is e−λ. Therefore, the probability
that no real event is published when there is at least one real
event is e−λ(1−p) − e−λ. Then

P (¬η|s) =
(e−λ(1−p) − e−λ)e−Λ

1− e−λ
=

(eλp − 1)e−Λ

eλ − 1

and P (¬η|¬s) = e−Λ. Since f(x) = 1
x ln(e−ε(ex − 1) + 1)

is a monotonic increasing function when x ∈ (0, c′], p ≥
1
λ ln(e−ε(eλ − 1) + 1). We have

P (¬η|s)
P (¬η|¬s)

=
(eλp − 1)

eλ − 1
≥ (e

λ
λ ln(e−ε(eλ−1)+1) − 1)

eλ − 1
≥ e−ε.

Moreover, P (¬η|s)
P (¬η|¬s) ≤ 1 ≤ eε. Now we analyze the case

when at least one event is published. Since Λ ≥ ln(1 + e−ε),
e−Λ ≤ eε−1

eε−e−ε . Combining with (eλp−1)
eλ−1

≥ e−ε, we have

P (η|s)
P (η|¬s)

=
1− (eλp−1)

eλ−1
e−Λ

1− e−Λ
≤ 1− e−εe−Λ

1− e−Λ
=

eε − 1

1− e−ε
≤ eε.

Besides, (eλp−1)
eλ−1

≥ 1 ≥ e−ε. We have the theorem.

Utility analysis: range counting of events. The addition of
fake events and probabilistic removal of real events changes
the number of events in an interval. However, since the events
are added from a known Poisson model and the probability
of removing a real event is known, it is possible to simply
deduct the expected number of fake events and adjust to the
number of real events retained in expectation in the interval
to obtain a good estimation. Thus, given a query range [x, y],
the algorithm returns event count as:

1) Compute n: The total number of events in [x, y]
2) Estimate the number of fake events:

∫ y
x

Λ(t) dt

3) Return n−
∫ y
x

Λ(t) dt

1−p
Here, the error in range count is introduced in two steps.

While the error in step 3 follows standard analysis of binomial
distribution with success probability 1

1−p , the error in step 2
is more subtle and is analysed below. The following Lemma
from [13] is useful to us:

Lemma 1. If a random variable Y follows a Poisson distribu-
tion with mean ΛY , P (|Y − ΛY | ≥ α) ≤ 2 exp

(
− α2

2(ΛY +α)

)
.

In our case, this leads to the following theorem:

Theorem 2. If Λ(t) = λ(t)
c ln (1 + e−ε), in step 2, we get

an estimation of the count of real events not removed by
the mechanism in the interval [x, y] with error bounded by
O
(√

Λ log 1
β

)
, with probability 1−β, where Λ =

∫ y
x

Λ(t)dt.

Proof. Given a interval [x, y], denote the count of real events
as n∗. Denote A(x, y) as the count of events after applying
our mechanism. A(x, y) − n∗ = n − n∗ − Λ. Notice that
n − n∗ is the count of fake events, following the Poisson
with mean Λ. Applying the Lemma 1, for any β, we set α =

log 2
β +

√
log2 2

β + 2Λ log 2
β , and we have

P

(
|A(x, y)− n∗| ≤ log

2

β
+

√
log2 2

β
+ 2Λ log

2

β

)
≥ 1−β.

Rearranging, we get the theorem.

From the above theorem, we can see that when the privacy
protection requirement is stronger (ε decreases), the rate of
fake events increases to achieve the level of protection, which
results in the decrease of the utility of the range counting
of events. This mechanism has the nice property that if each
distributed device j applies the mechanism with respect to its
local Poisson rate λj , then the aggregated global event stream
has the same privacy guarantee with respect to the global
Poisson event rate. This result follows from the Superposition

Time

Fig. 6. Schematic for the setting in Problem 2. The adversary knows that an
event occurs either in I or in I′ and wants to confirm if it has occurred in a
I . Both I and I′ have size ∆.

Theorem [19], [14] – that the union of Poisson processes is
still a Poisson process.

B. Problem 2: Protecting Event Times of Labeled Events

In this problem, we consider the events to be labeled and
the adversary knows the approximate time of an event and
wants to find a more precise time. In most cases, the adversary
does not need to know the precise timestamp, and just need
to narrow the time down to a small interval around the true
time. For example, for human activities like checking into a
venue, accuracy within a few minutes of the true time can be
considered accurate enough. Thus, for an event E occurred
at time t, we want to prevent an adversary from inferring
whether E had happened within a ∆ sized interval I (secret
s) versus within a neighboring interval I ′ (secret s′) as shown
in Figure 6. The objective is to obtain ε-Pufferfish privacy for
the discriminative pair (s, s′).

Note that the Mechanism 1 works on unlabeled event
sequence and does not work here as it is not trivial to construct
the labels for the fake events. Further, this is harder than
Problem 1 as we intend to hide the real timestamp of an event,
instead of its presence only. Also we relax the assumption on
the distribution of the events.
Mechanism 2: M(E) = t+ ξ, where ξ ∼ Lap (b). That is, a
Laplace noise similar to the Laplace mechanism as described
in Section II.
Prior distribution. For an event E we consider the adversary’s
prior distribution, θ as uniform distribution over W = I ∪ I ′,
where I and I ′ are neighboring time interval with size ∆. In
practice, an adversary often have a bounded guess of when an
event has occurred, for example, the adversary knows that the
target person went to a restaurant for lunch in a 2 hour window
and wants to find out if the check-in happened in the first hour
or in the next. Further the uniform distribution means that the
adversary does not know anything more about the timing of
the event. We would like to guarantee that the adversary can
not discriminate whether E happens in the interval I and I ′.

While the Mechanism 2 can put a sanitized event, M(E)
outside W with non-zero probability, the actual event time,
t will always be inside W . Below we analyze the privacy
guarantees for a uniform prior, followed by a utility analysis.

Theorem 3. Given that the adversary’s prior (θ) is a uniform
distribution over an interval W = I ∪ I ′, Mechanism 2 with
noise distribution Lap

(
2∆
ε

)
guarantees to protect ε-Pufferfish

privacy of whether an event E has occurred in a ∆ sized
interval I or in a neighboring interval I ′ of the same size.

Proof sketch. The proof considers three cases (i) M(E) ∈ I
and (ii) M(E) ∈ I ′, and iii) M(E) ∈W ′ where W ′ denotes

the region outside I ∪ I ′. For each case we calculate the ratio
of the probabilities of the output given the secret values and
combining them we get the theorem.

Utility Analysis. The utility of the mechanism is considered
with respect to range query over an interval Q. For a real
event E (at time t) and its sanitized version M(E), one
of the following would happen, i) both are inside Q (true
positive case), ii) t ∈ Q,M(E) /∈ Q (false negative), iii)
M(E) ∈ Q, t /∈ Q (false positive), and iv) both outside Q
(true negative). We denote that the probability of an event
being true positive is PTP = P (M(E) ∈ Q|t ∈ Q), false
negative is PFN = P (M(E) /∈ Q|t ∈ Q), false positive
is PFP = P (M(E) ∈ Q|t /∈ Q), and true negative is
PTN = P (M(E) /∈ Q|t /∈ Q).

Theorem 4. If an event E is sanitized using the mechanism 2
to follow ε-Pufferfish according to Theorem 3, then it has the
following utility results with respect to range query on Q of
size R∆: i) 1

2 (1−e−Rε/2) ≤ PTP ≤ 1−e−Rε/4, ii) e−
Rε
4 ≤

PFN ≤ 1
2 (1 + e−Rε/2), iii) 0 ≤ PFP ≤ 1

2 (1− e−Rε/2), and
iv) 1

2 (1 + e−Rε/2) ≤ PTN ≤ 1.

Proof sketch. The upper bound for the true positive prob-
ability occurs when the event E is centered at Q. Then
the probability that M(E) ∈ Q is the Laplace probability
mass in Q. W.l.o.g. consider Q = [−R∆/2, R∆/2]. Then
P (M(E) ∈ Q|t = R/2) =

∫ R∆/2

−R∆/2
Lap (x; 0, 2∆/ε) dx =

1−e−Rε/2. The lower bound occurs when t is at the boundary
of Q. Similar consideration produces the bounds for other
probabilities. Note that t can be arbitrarily far away from Q,
and this produces the lower bound for PFP and upper bound
for PTN .

From the above analysis, we observe that when the privacy
guarantee increases (ε decreases), the probability of counting
from E correctly decreases. While the Theorem 3 and 4 focus
on a single event, these results remain the valid for multi-event
scenario by applying the same claim individually to each event.

C. Problem 3: Protecting Orders of Labeled Events

In this problem, we consider protecting the relative order
of two nearby labeled events. We assume that the adversary
knows (θo) that the events ei and ej occurred within a ∆ sized
interval, i.e., |ti − tj | ≤ ∆ and wants to find out the order of
the events. Thus the discriminative pair of secrets are si<j and
¬si<j denoting ti < tj and tj < ti respectively. Below we
show that with suitable noise, Mechanism 2 achieves privacy
guarantees for event ordering.

Theorem 5. Mechanism 2 with Lap
(

2∆
ε

)
preserves ε-

Pufferfish privacy for event ordering for event-pairs within
∆ time interval.

Proof sketch. According to the Mechanism 2, both M(ei)
and M(ej) are Laplace random variables distributed with
mean values at ti and tj . Observe that the cumulative distri-
bution of the random variable Z = (M(ei)−M(ej)) at 0 pro-
duces the probability of M(ei) < M(ej). To prove the above

result, we need to consider two cases when M(ei) ≤M(ej),
i.e., Z ≤ 0 and M(ei) ≥ M(ej), i.e., Z ≥ 0. We skip the
calculations here for the interest of space.

This result implies that our mechanism provides a guarantee
against inference of precise ordering of nearby events. The
utility analysis for this problem is the same as Problem 2,
where the same mechanism is applied. Note that events that are
far apart in timings are not covered under this model, since any
modified assignment of timestamps that modifies the ordering
of distant events will randomize the the data completely.

IV. EXPERIMENTS

This section evaluates the utility for both proposed saniti-
zation mechanisms on three real world datasets.
Datasets. The datasets we use include location check-in data
(i) and mobile phone usage data (ii), (iii) to reflect different
patterns of event distributions and user behaviors. (i) Check-
in dataset: 12, 372 timestamped check-ins at Akihabara train
station in Tokyo by 1k users from Foursquare [31]. The events
are aggregated in a single day to increase the density of
the events. (ii) App-usage dataset: events occur in the app-
usage dataset [27] when a user opens one of his 10 most
frequent apps, e.g., SMS, mail, Facebook, etc. (iii) Phone-
unlock dataset: events occur when a user unlocks the phone.
The first two datasets contain data for about an year, and
the third has data for a week. The datasets we consider
have diverse densities (Figure 7(a)) with average inter-event
duration, from seconds for dataset (i) to minutes for dataset
(ii), (iii) to test our methods in varied scenarios.
Evaluating utility. The utility of the methods is measured in
line with our theoretical analyses. The utility of the Mecha-
nism 1 is measured using range counts. Given the counts at
a query range in the original and sanitized stream are n and
ñ respectively, the relative error measured as ξ = |n−ñ|

n is
used for the utility. The utility for Mechanism 2 is measured
with the true positive, false negative, false positive, and true
negative probabilities in the theory, and in the experiment, we
use F1 score to measure the four. F1 score is the harmonic
mean of the precision and recall, where precision is the ratio of
true positive over true positive plus false positive, and recall is
the ratio of true positive over true positive plus false negative.
The value of ε is application specific, and therefore we show
how the utility varies for different privacy parameters.

A. Evaluating Mechanism 1 for unlabeled events

The event rate λ(t) is estimated by the average rates of
the latest 100 events and we produce sanitizied events using
Mechanism 1. The range counts reported here are for each
such intervals. We consider the resolution of the event times
in seconds. c and c′ are fixed to 1 and 2 respectively. Figure 8
evaluate the mechanism 1 and demonstrate that the relative
error of Mechanism 1 is bounded and the error increases with
the decrease of ε (stronger privacy guarantee).

Comparison with existing methods. The p-sum mechanism
described in [4] and briefed in Section II-B is applied to check-
in event series with different resolutions prepared by suitable

10 3 10 1 101

Inter event duration (hr)

0.0

0.2

0.4

0.6

0.8

1.0
CD

F

App usage
Check-in
Mobile unlock data

0 5 10 15 20
Time of day (hours)

0

500

1000

1500

of

 c
he

ck
in

s

Original events
Sanitized =1
Sanitized =2
Sanitized =4

0 5 10 15 20
Time of day (hours)

0

500

1000

1500

of

 c
he

ck
in

s

Original events
Sanitized events

(a) (b) (c)

Fig. 7. (a) Inter-event duration distribution differs for the considered dataset
showing diversity in the settings. Temporal distribution of original and
sanitized events after applying Mechanism 1 (b) and Mechanism 2 (c) using
ε = 1 and ∆ = 1hr. Here we use check-in data. Note that Figure 8
considers the range counting method described in Section III-A and thus is
more accurate than (b).

binning (Figure 9 (a)). The error for the p-sum mechanism
increases with finer resolution, from the resolution of hours
to seconds. With the same level of privacy guarantee, our
Mechanism 1 produces events in second resolution and has
more accurate range count query results compared to the best
performance of p-sum method with hour resolution with the
least noise added.

Processing time. Both Mechanism 1 and 2 achieve constant
computation per event, the total computation cost is linear with
respective to the size of dataset as shown in Figure 9 (b), and
therefore the mechanisms scale well for large datasets.

10 1 100 101

= 1

= 2

= 4

(a) (b) (c)

10 2 10 1 100
0.00

0.25

0.50

0.75

1.00

C
D

F

= 1
= 2

= 4

10 2 10 1

Relative error ()

= 1
= 2

= 4

Fig. 8. Evaluating Mechanism 1. (a, b, c) vary ε for app-usage dataset, check-
in dataset, and phone-unlock dataset respectively. The errors remain low for
all values of ε. Naturally error increases with decreasing ε.

10 4 10 3 10 2 10 1 100 101 102

Relative error ()
0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Mechanism 1
Psum res.=1 hr
Psum res.=1 min
Psum res.=1 sec

(a) (b)
Fig. 9. (a) Range count queries are more accurate for our Mechanism 1
(resolution in seconds) than p-sum mechanism with even hour resolution. We
take ε = 1 for both cases. (b) Both the mechanisms are efficient for large
dataset. Sampling from Laplace distribution is slightly slower than sampling
from Poisson and Uniform distribution, thus the slight difference.

B. Evaluating Mechanism 2 for labeled events

Figure 7(c) demonstrates that the distribution of events is
well preserved by the Mechanism 2, which guarantees the
utility of events after sanitization. Figure 10 evaluates the
privacy-utility trade-off by varying ∆ and ε of Mechanism
2. The smaller ∆ and larger ε require less privacy guarantee,
less noise is added, and therefore more original information is
preserved. The utility is measured using the F1 score, which

10 1 100 101 102

Query interval length (hr)

0.0

0.5

1.0

F 1
sc

o
re

=1 hr

=2 hr

=4 hr

10 1 100 101 102

Query interval length (hr)

=1

=2

=4

(a) (b)

Fig. 10. Evaluating the utility for Mechanism 2 with 2000 randomly sampled
intervals in the check-in dataset. While varying ∆, ε is set to 1 and while
varying ε, ∆ is set to 1. The utility (F1 score) increases with larger ε and
smaller ∆.

is defined as the harmonic average of the precision and recall.
A larger F1 score corresponds to higher utility.

0 20
0.0

0.2

0.4

Query interval length (hr)
0 20

(a) (b)

0 20

(c)

= 1

= 2

= 4

= 1

= 2

= 4

E
v
t.

 o
rd

e
r

ch
a
n
g
e
 p

ro
b
.

= 1

= 2

= 4

Fig. 11. Evaluating event ordering for Mechanism 2. ∆ is set to 1 hour for
all datasets. (a), (b), and (c) are showing results for app-usage, check-in, and
phone-unlock datasets respectively.

We evaluate the probability that the order of randomly
chosen event pairs with different intervals is changed after
sanitization with mechanism 2, demonstrated in Figure 11.
With a larger ε, less noise is added to the event time and the
event orders are better preserved, where the order change are
mostly limited to the events within smaller time intervals.

V. RELATED WORK

Releasing continual counts for temporal event streams with
differential privacy guarantees have been studied in [4], [9],
[8], [30], obtaining similar results as we discussed in Sec-
tion II-B. More data-dependent works on continual aggregate
statistics release of stream data can be found in [5], [16].
All these works assume a suitable sampling frequency for
obtaining the event stream in the first place, and therefore,
they are not suitable for asynchronous event publication.

[24] achieves ε-Differential privacy by applying sanitization
in the frequency domain to the k Fourier coefficients with
highest spectral energy. However, this is not applicable in our
setting as it releases data only once. A data-dependent heuristic
method is proposed in [11] to release real time aggregate
traffic statistics under differential privacy using sampling and
filtering. [12], [1] have proposed to generate fake time series
following the same distribution as the original data. The
objective is to protect against re-identification of a time series,
but do not hide individual events in series. [28] has discussed
privacy preservation in presence of correlation in the data, e.g.,
activities of a user over time using Pufferfish privacy [18]
and models the data generation process as a Markov chain.
[22] has designed a time-series data trading system with
Pufferfish privacy under temporal correlations. However, it

does not trivially translate to privacy of individual event
timings. Blowfish [15] is another instantiation of the Pufferfish
framework for use on continuous variables, which however
does not apply to discrete abstractions like event ordering.
Differential privacy is also being explored for correlation time
series data [3].

Various methods have been proposed to protect user level
and activity level privacy. Differential privacy frameworks for
protecting specific inference from the data are investigated [25]
using dynamic Bayesian networks to capture the adversary’s
knowledge. The proposed method first infers latent states
and protects them. Continual adaptive release of histogram
statistics is considered [21] to protect users to be re-identified.
Unlike these works, the goal of the current paper is to protect
individual event timings.

VI. CONCLUSION

In this paper, we proposed multiple privacy preserving
mechanisms for protecting individual event timings and hid-
ing occurrence of an event. The proposed framework uses
Pufferfish privacy – a generalization of differential privacy –
and supports asynchronous event timings. The mechanisms
add considerably less noise than existing algorithms [4] to
achieve similar privacy guarantees. In sensor data streams
of multiple variables, privacy of complex relations between
variables may be of interest. Rigorous privacy definitions of
such relations through Pufferfish style privacy approach is a
promising research area.

ACKNOWLEDGMENT

J. Ding would like to acknowledge supports from Shanghai
Sailing Program 20YF1421300, Natural Science Foundation
of Shanghai No. 22ZR1429100. A. Ghosh would like to ac-
knowledge supports from Welcome Trust (Grant No. 213939).
J. Gao would like to acknowledge supports from NSF CCF-
2118953 and OAC-1939459.

REFERENCES

[1] H. Ahmadi, N. T. Pham, R. K. Ganti, T. F. Abdelzaher, S. Nath, and
J. Han. Privacy-aware regression modeling of participatory sensing data.
In SenSys, 2010.

[2] B. Bebensee. Local differential privacy: a tutorial. arXiv preprint
arXiv:1907.11908, 2019.

[3] Y. Cao, M. Yoshikawa, Y. Xiao, and L. Xiong. Quantifying differential
privacy in continuous data release under temporal correlations. IEEE
Transactions on Knowledge and Data Engineering, 2018.

[4] T.-H. H. Chan, E. Shi, and D. Song. Private and continual release of
statistics. ACM Trans. Inf. Syst. Secur., 14(3):26:1–26:24, Nov. 2011.

[5] Y. Chen, A. Machanavajjhala, M. Hay, and G. Miklau. Pegasus: Data-
adaptive differentially private stream processing. In Proceedings of
the 2017 ACM SIGSAC Conference on Computer and Communications
Security, pages 1375–1388. ACM, 2017.

[6] C. Dwork. Differential privacy. In Proceedings of the 33rd International
Conference on Automata, Languages and Programming - Volume Part
II, ICALP’06, pages 1–12. Springer-Verlag, 2006.

[7] C. Dwork, F. McSherry, K. Nissim, and A. Smith. Calibrating noise
to sensitivity in private data analysis. In Theory of cryptography
conference, pages 265–284. Springer, 2006.

[8] C. Dwork, M. Naor, T. Pitassi, and G. N. Rothblum. Differential privacy
under continual observation. In Proceedings of the forty-second ACM
symposium on Theory of computing, pages 715–724. ACM, 2010.

[9] C. Dwork, M. Naor, O. Reingold, and G. N. Rothblum. Pure differential
privacy for rectangle queries via private partitions. In International Con-
ference on the Theory and Application of Cryptology and Information
Security, pages 735–751. Springer, 2015.

[10] C. Dwork and A. Roth. The algorithmic foundations of differential
privacy. Found. Trends Theor. Comput. Sci., 9(3–4):211–407, 2014.

[11] L. Fan, L. Xiong, and V. Sunderam. Differentially private multi-
dimensional time series release for traffic monitoring. In IFIP Annual
Conference on Data and Applications Security and Privacy, pages 33–
48. Springer, 2013.

[12] R. K. Ganti, N. Pham, Y.-E. Tsai, and T. F. Abdelzaher. Poolview:
stream privacy for grassroots participatory sensing. In Proceedings of
the 6th ACM conference on Embedded network sensor systems, pages
281–294. ACM, 2008.

[13] O. Goldreich. Introduction to property testing. Cambridge University
Press, 2017.

[14] G. Grimmett and D. Stirzaker. Probability and random processes.
Oxford university press, 2001.

[15] X. He, A. Machanavajjhala, and B. Ding. Blowfish privacy: tuning
privacy-utility trade-offs using policies. In SIGMOD Conference, 2014.

[16] G. Kellaris, S. Papadopoulos, X. Xiao, and D. Papadias. Differentially
private event sequences over infinite streams. Proceedings of the VLDB
Endowment, 7(12):1155–1166, 2014.

[17] D. Kifer and A. Machanavajjhala. No free lunch in data privacy. In
Proceedings of the 2011 ACM SIGMOD International Conference on
Management of data, pages 193–204, 2011.

[18] D. Kifer and A. Machanavajjhala. Pufferfish: A framework for math-
ematical privacy definitions. ACM Transactions on Database Systems
(TODS), 39(1):3, 2014.

[19] J. F. C. Kingman. Poisson processes, volume 3. Clarendon Press, 1992.
[20] B. N. Levine, M. K. Reiter, C. Wang, and M. Wright. Timing attacks

in low-latency mix systems. In International Conference on Financial
Cryptography, pages 251–265. Springer, 2004.

[21] H. Li, L. Xiong, X. Jiang, and J. Liu. Differentially private histogram
publication for dynamic datasets: an adaptive sampling approach. Pro-
ceedings of the ACM International Conference on Information and
Knowledge Management., 2015:1001–1010, 2015.

[22] C. Niu, Z. Zheng, S. Tang, X. Gao, and F. Wu. Making big money
from small sensors: Trading time-series data under pufferfish privacy. In
IEEE INFOCOM 2019-IEEE Conference on Computer Communications,
pages 568–576. IEEE, 2019.

[23] A. M. Piotrowska, J. Hayes, T. Elahi, S. Meiser, and G. Danezis.
The loopix anonymity system. In 26th USENIX Security Symposium,
USENIX Security, pages 16–18, 2017.

[24] V. Rastogi and S. Nath. Differentially private aggregation of distributed
time-series with transformation and encryption. In Proceedings of the
2010 ACM SIGMOD International Conference on Management of data,
pages 735–746. ACM, 2010.

[25] N. Saleheen, S. Chakraborty, N. Ali, M. M. Rahman, S. M. Hossain,
R. Bari, E. H. Buder, M. B. Srivastava, and S. Kumar. msieve:
differential behavioral privacy in time series of mobile sensor data. Pro-
ceedings of the ACM International Conference on Ubiquitous Computing
(UbiComp), 2016:706–717, 2016.

[26] B. Schatz, G. Mohay, and A. Clark. A correlation method for establish-
ing provenance of timestamps in digital evidence. digital investigation,
3:98–107, 2006.

[27] C. Shepard, A. Rahmati, C. Tossell, L. Zhong, and P. Kortum. Livelab:
measuring wireless networks and smartphone users in the field. ACM
SIGMETRICS Performance Evaluation Review, 38(3):15–20, 2011.

[28] S. Song, Y. Wang, and K. Chaudhuri. Pufferfish privacy mechanisms
for correlated data. In Proceedings of the 2017 ACM International
Conference on Management of Data, pages 1291–1306. ACM, 2017.

[29] Y. Tian, K. Zhou, M. Lalmas, and D. Pelleg. Identifying tasks from
mobile app usage patterns. In Proceedings of the 43rd International
ACM SIGIR Conference on Research and Development in Information
Retrieval, pages 2357–2366, 2020.

[30] X. Xiao, G. Wang, and J. Gehrke. Differential privacy via wavelet
transforms. IEEE Transactions on knowledge and data engineering,
23(8):1200–1214, 2011.

[31] D. Yang, B. Qu, J. Yang, and P. Cudre-Mauroux. Revisiting user mobility
and social relationships in lbsns: a hypergraph embedding approach. In
The World Wide Web Conference, pages 2147–2157, 2019.

