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ABSTRACT
Periodic phenomena are ubiquitous, but detecting and predicting
periodic events can be di�cult in noisy environments. We describe
a model of periodic events that covers both idealized and realistic
scenarios characterized by multiple kinds of noise. �e model incor-
porates false-positive events and the possibility that the underlying
period and phase of the events change over time. We then describe
a particle �lter that can e�ciently and accurately estimate the pa-
rameters of the process generating periodic events intermingled
with independent noise events. �e system has a small memory
footprint, and, unlike alternative methods, its computational com-
plexity is constant in the number of events that have been observed.
As a result, it can be applied in low-resource se�ings that require
real-time performance over long periods of time. In experiments
on real and simulated data we �nd that it outperforms existing
methods in accuracy and can track changes in periodicity and other
characteristics in dynamic event streams.
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1 INTRODUCTION
We will study discrete event streams that exhibit approximate peri-
odicity. �ese sequences contain noise events interleaved with the
periodic events, together with variations in the times that events
are observed, and variations in the period itself.

�e presence of noise events, or false positives, is common in
sensor data and other data streams that are subject to inaccuracies
and calibration issues. An example is shown in Figure 1, where we
use the output of an accelerometer on a phone to detect footsteps
as a person walks. �e steps are indicated by large spikes in ac-
celeration, but for any threshold that reliably detects actual steps,
extraneous spikes in acceleration create false detections – or noise
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events. �e challenge here is to detect the periodic events against
the backdrop of these false positives.
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Figure 1: Noise events in footstep detection. Top plot: Ac-
celerometer signal (Euclidean norm of acceleration given by
3-axis accelerometer onmobile phone), with event detection
threshold in red. Bottom plot: Detected events. Some of the
detections are noise events, produced by inter-footstep ac-
celerations that exceeded the threshold.

Another common property of approximately periodic sequences
is that even for events originating in the periodic process, the event
times can be subject to noise or dri�. While footsteps are periodic,
they do not follow a perfect lock-step pa�ern – a person may pause,
speed up, or slow down. �ese temporal o�sets can accumulate,
causing the periodic signal to depart from its original phase and/or
period. Figure 2 shows an example of this behavior. A change in
phase can throw o� classical methods such as Fourier transform,
which has been used to detect periodicity in discrete event streams
in previous works [12].
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Figure 2: Top plot: Acceleration signal during walking. Bot-
tom plot: Black lines denote local maxima in acceleration
above a threshold, corresponding to individual footsteps;
red line shows a sinusoid that ismatched to the initial period
of footsteps, demonstrating phase dri� (or noise in inter-
event delays) over time.

We thus need methods to �nd noisy pa�erns that are functions
of time itself from an event stream. Some methods have been
developed in the past to solve the problem of detecting discrete
periodic events (e.g., [11, 18, 19]) but these methods cannot handle
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sequences with variability in inter-event time and consequent phase
changes. We will discuss �exible designs to accommodate this
variability and as well as noise events, while being computationally
e�cient for long streams of events.

Motivations and applications. �ere are several scienti�c and
technological applications for systems that can discover long term
pa�erns and periodicities. With the emergence of low-cost sensor
technology, ubiquitous and mobile sensing has become common
for health care [17], personalized services [14, 16, 22] and other
applications. Detection of regular, periodic behavior plays a role in
customizing services to individual users based on their schedules.
Steps or gait data is valuable in monitoring for neuromotor diseases
like Parkinson’s [3, 15] that are characterized by irregular gait.

In systems and engineering domains, e.g., datacenter networks,
periodicity can occur at smaller time scales [4] of microseconds to
milliseconds, and is relevant in detecting DoS a�acks [6]. Complex
networks are known to generate periodic pa�erns, such as emergent
tra�c behavior in [12], or periodic surge of infectious diseases in
social networks [8].

Our contribution. We de�ne a model of discrete signals with
approximately periodic sequences embedded in them. �e model
is described in Section 2, and includes a periodic component with
probabilistic inter-event time, and a Poisson process modeling the
aperiodic false positive noise events. It generalizes previous sys-
tems [10, 11].

Section 3 describes the design of a particle �lter system based
on this model, which can identify the periodic events from the
sequence in an online fashion. In addition to predicting events, it
infers parameters of the underlying process such as the local period,
the rate at which the period changes, and the rate at which noise
events tend to occur. �e particle �lter system works with a col-
lection of particles or hypotheses. Each hypothesis includes guesses
about the parameters of the model, such as the period. With each
new event, the system evaluates the current set of particles and
assigns a weight to each depending on how well it has predicted the
latest events. Based on these weights, the model occasionally reju-
venates particles to retain a diverse and plausible set of hypotheses
and improve long-run accuracy.

To handle noise events, each hypothesis in the particle �lter
identi�es the most recently observed event as either a periodic
event or a noise event, in addition to tracking the overall rate
of noise events. In systems where almost all events are due to
noise, identi�cation of periodic events is costly and error-prone,
while the predictability of periodic events loses much of its utility
as noise events overwhelm periodic events. In order to achieve
high performance and a low memory footprint in contexts where
periodic event detection is possible and useful, our particle �lter
incorporates the assumption that tractable noise rates are more
likely.

�e system works in an online or incremental manner, in that it
only requires knowledge of events up to a point in time, without
the need to know the entire event stream. �us it can be used to
track events in real time – even as the period changes. We show it
can operate accurately with relatively few particles and thus can
be used at a low computational cost to analyze large volumes of
data in a single pass. �e particle �lter processes events as they

occur, and incurs no cost for the quiet periods between them. �us
the cost of the method depends only on the number of events, and
is independent of the total duration of the event sequence or the
sampling rate.

Experiments in Section 4 show that the system can accurately es-
timate the period of an event-generating process on both synthetic
and real-world data. Existing methods are not designed to handle
shi�s in phase (Figure 2) and noise, as a result, they perform rela-
tively poorly in these cases. Each hypothesis includes expectations
about when future periodic events will occur, so the system can be
used to predict upcoming events. Our experiments show that these
predictions are accurate and robust to noise and changing periods.
Moreover, the experiments show that our system works well with
sparse data, converging to accurate estimates a�er observing only
a few events. Section 5 discusses previous relevant works.

2 MODEL AND PROBLEM DESCRIPTION
In this section, we will develop a model that allows noise in periodic
event sequence – both in the period itself and in occurrence or
observation of individual events. �en we discuss how this model
relates to di�erent real scenarios.

Periodic events o�en arise because some recurring process takes
a roughly uniform amount of time to �nish and yield an observable
event. Examples include heartbeats, volcanic geysers or steps taken
by a walking person. In these systems an event may sometimes be
delayed due to irregularities of the intervening process, resulting
in a shi� of phase as shown in Figure 2.

If such a system is perfectly regular, then every event i+1 occurs
at time xi+1, exactlyT time units a�er event i , that is, xi+1 = xi +T .
�e e�ect of the irregularity is then modeled using a Gaussian of
variance σ 2 and zero mean added to T , giving us xi+1 ∼ N (xi +
T ,σ 2). Here T is the fundamental period or inter-event interval
parameter, while σ can be seen as the “noisiness” of the period over
time.

Other than the intrinsic irregularity of the process, the data
can re�ect noise events. Noise events may either come from the
observation mechanism a�ecting both record of true events as we
have seen in Figure 1, or it may represent a di�erent or spurious
source of events.

We model this noise sequence as a Poisson process, i.e., a se-
quence of events z1, z2, ... where zi+1 = zi + δ , and δ follows an
exponential distribution with rate parameter λ; a higher lambda
implies a greater rate, or shorter expected durations between false
positive events.

�us in our model, the overall sequence y = y1,y2, . . . can be
partitioned into two subsequences1:

• A sequence x of periodic events, where xi+1 ∼ N (xi +
T ,σ 2).

• A sequence z of noise events given by zi+1 = zi +δ , where
δ follows an exponential distribution with an expectation
of (λ)−1, for a rate parameter λ > 0.

Problem statement. Given a sequence of event times y1:n =
y1, . . . ,yn , we wish to infer the periodT , which is the fundamental
parameter that describes the behavior of the system. We would

1A subsequence of a sequence is a subset of the events, not necessarily contiguous, in
the same order as in the original sequence.
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also like to know the parameters σ and λ that determine the extent
and nature of the noise in the system.

As an additional feature, we want the algorithm to be online,
meaning that it processes the sequence one item at a time, updating
its estimates with each input without requiring that the system
store or process the full event history. �e ideal algorithm will make
inferences withO (1) time and memory complexity a�er each event,
and can thus remain responsive even a�er processing arbitrarily
large numbers of events.

Generality of the model and local �t with input. �is model
incorporates quite general scenarios. It does not make any assump-
tion about there being a set of “true” signal events to detect as
opposed to observational noise. It assumes that all events may be
generated by the same underlying process, and aims to detect the
presence of a periodic subsequence. �e Gaussian distribution of
inter-event time represents a sum of unknown variables that may
cause the local variations in the period.

As shown in Figure 1, the threshold for an “event” determines the
noise rate. It is possible to set a high threshold to ensure very few
noise events, at the risk of missing some fraction of periodic events.
However, lower thresholds are more desirable – they may include
more noise, but will not miss the periodic events. Our model is
designed with this setup in mind – that periodic event information
is preserved, even at the cost of more noise events. �e parameter
λ as part of the hypothesis learns this noise rate. Poisson processes
are commonly used for such models, as they only assume that the
noise occurs at a certain uniform rate in any temporal locality.

Note that the system operates in terms of a set of evolving hy-
pothesis and can adapt to changing model parameters online as the
system behavior changes. �us, it is not required that the model �ts
the global data over long periods of time, only that it �ts the system
approximately, over any short period of time. Experiments show
that in fact this model successfully adapts to periodic events and
tracks them closely with changes in the system. It’s performance
remains consistent when the noise and inter-even variability are
generated using distributions other than the ones assumed in the
model.

Discussion and variations of themodel. �ere are various com-
mon scenarios where periodic events are generated by processes
that are special cases or variations on the model above. �e simplest
is what we will call strict periodicity, where successive events are
separated by an exact time intervalT , such as clock ticks, or events
tied to clock-like sequences. Formally, xi = ϕ + iT , if all events
are due to a strictly periodic process. We get this behavior in our
model above by se�ing σ = λ = 0.

Strict periodicities are easy to capture, by simply observing the
interval between successive events. A variant of this is partial
periodicity, where a strict periodic function is mixed with noise.
�is was considered in [10].

Certain sequences like heartbeats or volcanic geysers satisfy
λ = 0;σ > 0 – they are not tied to a clock, but depend on a build
up in the intervening process that can have some variability, and
change in phase or even dynamic change in the period itself.

�ere are systems where noise in the periodicity exists, that is
σ > 0, but phase does not not change. Example would be daily
activities of a person – such as checking the news in the morning

– which may not have a strict inter-event time, but still around a
particular time in the morning. �ese can be modeled by adding
observational noise to strict periodicity: xi ∼ N (ϕ + iT , σ̂ 2). �e
variation in inter-event time does not a�ect the phase ϕ here. �is
type of sequences have been addressed in a recent work [18]. �e
approach there is to consider the histogram of events modulo a
numberW , which produces a pronounced peak at the correct value
ofW = T . We discuss this and other related methods in Section 5.

3 PARTICLE FILTER DESIGN
In this section, we describe a particle �lter based system to detect
periodicity in noisy and approximately periodic event sequences.
�e next subsection brie�y summarizes particle �lters, which form
the foundation of our approach, and lists our notations. Following
this, we describe the details of our design to adapt particle �lters to
the current problem.

3.1 Particle �lters and importance sampling
Particle �lters, or sequential Monte Carlo methods, are a popular
family of online methods for making inferences about latent vari-
ables in noisy environments. �ey have been applied to diverse
problems, including locating and tracking objects using sensor
data (e.g., [23]), machine vision (e.g., [20]), and natural language
processing (e.g., [5]).

�e essential idea is that each particle is a point sample in the
space of possibilities of all the parameters in question. We inter-
changeably use the term hypothesis to mean that each particle is
one of our guesses of the true con�guration of the system.

Symbol Description

f (x ;D)
Probability of random variableR ∼ D taking value
in small neighborhood of x .

F (x ;D)
Probability of random variableR ∼ D taking value
≤ x .

exp(λ) Exponential distribution with rate λ.
yi ith Event timestamp.

h
(j )
i

jth hypothesis (also called as particle) a�er observ-
ing ith event timestamp.

L
(j )
i Likelihood weight of h(j )i .

Hypothesis parameters of h(j )i

T
(j )
i Period parameter value.

σ
(j )
i

Standard deviation for Gaussian distribution of
period variability.

λ
(j )
i Rate of false positive noise events.

ẑ
(j )
i Latest event timestamp marked as noise event
x̂
(j )
i Latest event timestamp marked as periodic event

Table 1: De�nition of useful symbols

Our goal is to determine the period T of an approximately peri-
odic sequence. In probabilistic terms, we want to obtain a posterior
distribution over possible values ofTn : the period a�er thenth event,
given a vector of observed event timestamps y1:n = {y1, ...,yn } up
to that point. �e period is not the only salient feature of the
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event-generating process, so we will use hn to denote the ensemble
of features, which includes the period, variance σ 2, rate of noise
events λ and whether an event is periodic (from the subsequence
x ) or is noise (from subsequence z).

With a posterior distribution over hn , we can draw probabilistic
conclusions about any of these variables. �e probability of hn
cannot be computed exactly because it requires solving intractable
integrals, but we can e�ciently approximate its distribution in con-
stant time per incoming event, by using a simple recursive Bayesian
algorithm known as a bootstrap �lter or sequential importance sam-
pler. �is idea is closely related to conditional density estimation in
machine vision. We refer the reader to [7, 24] for a detailed expla-
nation, restricting our a�ention to a brief summary in Algorithm 1,
along with the distributional assumptions that allow us to apply it
to the current problem.

In this algorithm, we need to keep track of our estimates of
various parameters a�er each event. �us we use subscript i to
represent value of variables a�er event i . Further, each hypothesis
or particle has its own estimate of variables, thus we use superscript
(j ) to represent the estimate of the variables in particle (j ). Table 1
summarizes all the symbols used in this section, while Algorithm 1
presents the basic operation of a bootstrap �lter.

Algorithm 1: Sequential Monte Carlo with resampling
Particle �lter (Event timestamps y1:n )

begin
Initialize k hypotheses h(1)0 , . . . ,h

(k )
0 by sampling from

a prior distribution over hypothesis parameters.
for (time step i in 1, . . . ,n) do

for (particle j in 1, . . . ,k) do
sample h(j )i from p (hi |h

(j )
i−1)

Likelihood weight L (j )
i = p (yi |h

(j )
i )

end

Normalize likelihood weights: L̃ (j )
i =

L
(j )
i

k∑
j=1
L

(j )
i

Resample k hypotheses with replacement
according to normalized weights L̃ (j )

i .
end

end

Algorithm 1 processes each event as follows. It initializes several
hypotheses from the distribution over features for each particle.
�en at every event, it checks how likely the new event is for each of
these hypotheses, and uses that as a “score”, L (j ) , for each particle.
Next, it normalizes the scores to turn them into probabilities, and
resamples the set of hypotheses according to these to get the set of
particles for the next round, e�ectively favoring neighborhoods of
particles that have matched be�er with recent events. At any time,
the estimate for a parameter is the expectation of the parameter
over all particles weighted by their current scores.

3.2 Particle �lter for discovering periodicity
A hypothesis hn contains the estimated characteristics of the peri-
odic signal a�er n events. �e periodic characteristics are speci�ed

using the period Tn , and standard deviation σn for Gaussian distri-
bution of period variability. Our hypothesis hn also includes the
last periodic event x̂n in the sequence. We have included the rate
of background noise events λn , and the timestamp of the last event
that was a�ributed to noise, ẑn in our de�nition of hn . We will use
i to index event timestamp, yi , where 1 ≤ i ≤ n.

Under this model, each event yi originates from either the peri-
odic signal or false positive noise. We introduce ri ∈ {0, 1} to track
event provenance, where ri = 1 represents the case where the ith
event comes from the periodic process. �is auxiliary variable facil-
itates e�cient inference: using ri , we obtain a closed-form solution
for the density of periodic events conditional on the last periodic
event, and noise density conditional on the last event. Calculating
P (ri |y1:i ,h0:i−1, r1:i−1) exactly is expensive, as the number of states
involved increases exponentially as we observe more events, but
we can augment our sampling procedure to re�ect the posterior
distribution of ri . For simplicity we omit (j ) superscripts where
they are clear from context.

�e bootstrap particle �lter algorithm requires us to specify three
probability distributions:

• A prior over hypotheses for initialization of h(j )0 .
• A likelihood function adjusting the weight of a hypothesis

given observed events.
• A distribution de�ning how hypotheses change between

events.
We specify the distributions as follows:

Priors. For each hypothesis h(j ) we sample the initial period T (j )
0

and noise event rate λ(j )0 from exponential distributions, and sample
the standard deviation σ

(j )
0 uniformly from the interval [0,T (j )

0 ].
At the initialization stage, we know nothing about the periodicity
value or noise event rate other than that they are positive, thus we
use exponential distribution as a maximum entropy guess for the
distribution. Both x̂

(j )
0 and ẑ

(j )
0 are assumed to start at zero.

Likelihood weighting. Given a hypothesis hi , the likelihood of
event i occurring at timeyi is equal to L = ∑

ri ∈0,1 p (yi , ri |hi ). �e
periodic signal’s contribution to this sum is Lper = p (yi , ri = 1|hi ),
and is the product of two terms:

• Density function from the previous periodic event, assum-
ing that x̂i−1 is known. Since the time of a periodic event
is subject to additive Gaussian noise, we represent this
density as

p (yi |h
(j )
i ) = N (T

(j )
i + x̂

(j )
i−1,σ

(j )
i ). (1)

• A term based on the observation that ri = 0 if and only if
there are zero noise events in the time between ẑi−1 and
yi , inclusive. If a Poisson process generates noise events,
then that probability is e−λi (yi−ẑi−1 ) .

�e false positive noise’s contribution to the total likelihood is
Lbд = p (yi , ri = 0|hi ). Here, we have a product of two terms:

• An exponential distribution, with its origin at ẑi and a rate
equal to the noise rate.

• �e cumulative probability that no periodic event occurred
between x̂i−1 and yi . We approximate this probability by
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the complementary cumulative density of periodic events
between yi and x̂i−1 by evaluating the complementary
cumulative density function for the distribution in Equa-
tion 1.

A pseudo code of of the likelihood weighting is presented in Al-
gorithm 2. �e components of the likelihood function are illustrated
in Figure 3.
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Figure 3: Periodic and false positive noise’s contribution to
the likelihood of hypothesis j. �e periodic contribution
Lper is centered around Tn + x̂n where x̂n denotes the last
periodic event and the noise contribution Lbд starts from
the last noise event ẑn .

Algorithm 2: Likelihood Weighting of jth hypothesis h(j )i on
observing ith event timestamp yi .

Likelihood Weight (h(j )i , yi )
begin
Lper = f

(
yi ;N (x̂i−1 +Ti ,σi )

)
×
(
1 − F

(
yi − ẑi−1; exp(λi )))

Lbд = f
(
yi − ẑi−1; exp(λi )

)
×
(
1 − F

(
yi ;N (x̂i−1 +Ti ,σi )

))
L = Lper + Lbд
return L

end

Hypothesis updates. With each iteration, the hypothesis distribu-
tion is updated according to the prior over state changes. We obtain
h
(j )
i by sampling from p (hi |h

(j )
i−1), where p (hi |h

(j )
i−1) implements

for each parameter in h
(j )
i , a sampling from a Cauchy distribu-

tion centered at the previous value of the parameter. For example,
Ti ∼ Cauchy(Ti−1,b) where b is a tunable scale parameter. �e
period (T ), periodic deviation (σ ), and noise rate (λ) (truncated at
zero) are updated according to the said Cauchy distribution.

Note that these updates make it possible to iteratively re�ne
parameter estimates, in addition to tracking the dynamics of the
system, e.g., when the period or phase changes over successive
events.

�e ẑi−1 and x̂i−1 terms are updated di�erently depending on
whether the provenance of the latest event is the periodic or
noise process. Given that yi is observed, we can use p (yi , ri |hi )
to obtain a conditional distribution for ri : p (ri = 1|yi ,hi ) =

p (yi ,ri=1 |hi )
p (yi ,ri=1 |hi )+p (yi ,ri=0 |hi ) . We can then sample ri from this
Bernoulli distribution, and by extension x̂i−1 and ẑi−1: if ri = 1
then, x̂i = yi and ẑi = ẑi−1. Otherwise, x̂i = x̂i−1 and ẑi = yi .

Output: period estimate. A�er seeing n events, the expected
period of the event sequence is E[Tn] ≈ ∑k

i=1 L̃
(j )
n T (j ) , and repre-

sents an estimate of the period. More generally, we can take the
expectation of arbitrary functions f (.) of hypotheses by replacing
T
(j )
n with f (h

(j )
n ), to obtain estimates of other parameters such as

noise rate and period variability. In our experiments, we use the
weighted median as a more robust estimate of parameters.

3.3 Practical optimizations for noisy
environments

�e algorithm presented in the previous section can detect the pe-
riod of a noisy sequence of events, but can require a large number
of hypotheses to do so reliably; the particle �lter needs a consid-
erable number of hypotheses to ensure that several occupy high-
probability regions of the parameter space. If we use a small number
of hypotheses, then the particle �lter will occasionally provide poor
or high-variance estimates, especially when the period or dynamics
are extreme or a priori unlikely. In this section, we present a modi-
�cation our basic algorithm that preserves accuracy while using
fewer hypotheses.

A pragmatic observation from an end-user’s point of view is that
if the number of noise events in a sequence is much greater than the
number of periodic events, then the period value of the signal is not
useful for predicting future events, and periodic event detection may
become infeasible. Motivated by this observation, we can modify
the likelihood weighting strategy for the previous algorithm to
capture the assumption that we are facing an estimation problem
for which there exists a useful solution. In so doing, we improve our
ability to obtain useful solutions if they exist, and incur negligible
costs if they do not.

Noise rate λ
0

1

W
e
ig

h
t 

m
u
lt

ip
lie
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T (j)
n

c

No re-weight

Reduce weight

Figure 4: Re-weighting function.

We �x an application speci�c input parameter c to our algorithm,
expressing a ratio of the number of noise events to the number of
periodic or regular events, above which useful inferences are likely
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to be elusive. Parameter c can be tuned for speci�c applications,
but in practice the value 2 works well across the se�ings for all of
our experiments. We assign lower probabilities to hypotheses that
have higher noise event rates than c , reducing the weights of the
hypotheses for which λ(j )i ×T

(j )
i < c according to an exponential

decay function. �e start location of the exponential decay function
is set to be c

T (j )
i

, and the rate depends on the importance of the

assumption of limiting noise rate. We multiply the likelihood of
a hypothesis derived as described in the previous section by a
value drawn from a function as represented in Figure 4. With this
strategy, we ensure low weights for the hypotheses which have
large periods and high noise event rates that would lead to poor
predictive accuracy.

4 EXPERIMENTAL EVALUATION
We tested the performance of our particle �lter and compared it
with existing ideas on real human gait data and human pulse data.
We also created several sets of arti�cial data with di�erent values
of intrinsic variability, noise event rate, and period to precisely
characterize the detection accuracy. Overall, we found that:

• In presence of noise events and phase dri�s the particle
�lter method outperforms other techniques in accuracy.

• With higher noise event rates and phase dri�, only the
particle �lter produces reasonably accurate and reliable
results.

• �e particle �lter method can operate with a reasonable
and constant number of about 256 particles to give good
results.

• �e particle �lter runs more e�ciently than competing
methods, and thus is suitable for operation in an online
environment to produce increasingly accurate results.

• On data with rapidly changing periodicity, the method can
track the period closely. We show this by applying the
technique to human step data to determine changing gait
rate.

• �e method applied to real data such as human pulse and
gait data accurately detects periodicity.

�e following subsections �rst describe the competing tech-
niques for periodicity detection, and then the detailed experimental
results.

4.1 Comparison algorithms
�e following popular methods for detecting periodicity are com-
pared with the particle �lter algorithm.

Fourier Transform: �e frequency with highest spectral en-
ergy in Fast Fourier Transform algorithm is a reasonable candidate
for the true frequency of the system. �is technique has been used
in the past as a practical method for detecting periodicity [12].

Autocorrelation: �e cross-correlation of the input signal with
the signal itself with di�erent amounts of o�sets, thus building the
autocorrelogram can be used to �nd period of a signal. �e delay of
the signal where the cross-correlation value reaches its maximum
value can then be treated as the period of the signal [25]. A linear
search on period values is required to �nd this maximum.

Segmentation based algorithm: �e method described in [18]
detects periodicity in face of approximate periodicity and noise,
as described in Section 2. �is algorithm operates by checking all
possible periods by computing the histogram of events modulo the
period, and looking for a “peak” in this histogram. �is checking
of all possible periods makes it ine�cient on large datasets.

4.2 Sensitivity to noise and model parameters
To gain understanding of the basic operation of the system in
noisy environments with variability in period and presence of noise
events requires data with precisely known values of these parame-
ters. We thus simulated arti�cial data based on the models described
in Section 2.

4.2.1 Generation of synthetic data. With �xed values for param-
eters: periodT , deviation of periodic events σ , and noise event rate
λ, we generated two separate sequences: the periodic events and
the noise events, and merged them in sorted order.

Periodic event sequence (x). �e �rst periodic event x0 is set
to 0. Each subsequent periodic event i is designated to occur at
time xi given by xi = xi−1 + δper . �e distance between two
consecutive periodic events, δper is drawn form the Gaussian dis-
tribution N (T ,σ 2). While drawing the samples δper , we make
sure that the (i − 1)th periodic event always precedes ith periodic
event, i.e. xi−1 < xi , i > 0, by re-sampling δper from the Gaussian
distribution.

False positive noise event sequence (z). Similar to periodic
event sequence, the �rst noise event, z0 is assumed to occur at
time 0. Each subsequent noise event time zi is constructed using re-
cursive function zi = zi−1 + δbд . �e inter-event distance between
two consecutive noise events, δbд is drawn from an exponential
distribution with rate λ.

�e �nal event sequence y is a merge of the two event sequences
in sorted order.

4.2.2 Performance evaluation of accuracy. �e evaluations are
based on the signal characteristic parameters: periodT , the relative
variance of periods (σT ), and ratio of the frequency of noise events
to frequency of periodic events in the signal.

For a signal with period T , let us denote the period predicted by
an algorithm in consideration by T̂ . We de�ne the relative error ξ
as:

ξ =
�����
ln T̂

T

�����
(2)

�is measure is symmetric with respect to multiples of T . �at
is, an estimate of αT is considered equally erroneous as an estimate
T /α .

For all the experiments, unless mentioned otherwise, we use a
signal with 40 periodic events; the total number of observed events
varies according to the noise event rate. In all experiments, the
particle �lter assumes that the rate of noise events rarely reaches
twice the rate of periodic events. �is assumption is not critical in
practice as we show in our results in Figure 6(b). All experiments
are repeated 16 times with independently generated synthetic data.

E�ect of number of particles. Particle �lters involve a tradeo�
between e�ciency and accuracy. Increasing the number of particles
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increases accuracy, but the computational cost increases linearly
with number of particles. As expected, larger particle counts lead
to lower average error (Figure 5). �e error decreases steadily
with increasing number of particles and we �nd that the error is
quite low at about 256 particles, beyond which the gains are small.
�us, in the rest of the experiments, we use 256 particles. Note that
computational cost for using 256 particles is nominal in comparison
to other algorithms as discussed later in this section.

All the box plots in this paper have bo�om and top boundaries as
0.25 (Q1) and 0.75 (Q3) quartiles of the relative error ξ . �e middle
line in the boxes represent the median values (Q2) of the relative
error. �e whiskers are represented as 0.15 times the inter quantile
range, e.g. Q3 + 1.5 × (Q3 − Q1). Values appearing outside these
ranges are considered as outliers and represented as individual
points.
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Figure 5: Error in period detection decreases with number
of particles. 256 particles is a reasonable tradeo� for practi-
cal use where error is low and number of particles is small.
Signal parameters: period T=10, relative deviation ( σT ) = 0.6,
and average number of noise events per periodic event = 1.5.

E�ect of relative deviation of periodic events (σT ). �e de-
viation that the periodic signal can have, given by the standard
deviation σ of the normal distribution, determines how fast the
phase can dri� away from the original con�guration. Figure 6(a)
shows that as σ increases relative to T , other methods perform
poorly for even small values of σ , and do increasingly worse. �e
particle �lter achieves reliable results even at high variance. �is
is in part due to the fact that unlike other methods, the particle
�lter is designed to be adaptive to change in phase and period and
does not a�empt to �t a single global model, including phase, to
the entire signal.

E�ect of noise events. Figure 6(b) shows that the particle �lter
based method has the lowest period detection error among all other
methods for all noise event rates starting from no noise event up
to a rate of 2.5 times periodic events. In this case, other methods
perform well for few noise events, but with increase of noise events,
their relative errors rise rapidly. Note that our parameters are set
to assume that noise rates of over twice the periodic event rates

are unlikely. However, at a rate of 2.5 times the errors for particle
�lter are still lower than other methods.

E�ect of period (T ) �e periodT itself is not expected to have any
signi�cant e�ect on the relative error. Our experiments show in Fig-
ure 6(c) that while all methods have a general increase in variance,
particle �lter is by far the most accurate across the spectrum.

E�ect of number of observations. Figure 7(a) shows that par-
ticle �lter based method converges with minimum number of ob-
servations in comparison to other methods. In this experiment,
Fourier transform and autocorrelation algorithm never converge
to low error. �e fast convergence of particle �lter implies that it
can work with smaller quantities of data and does not require long
observation sequences.

Tracking rapidly changing periods. In this experiment, we �x
the noise parameters while changing the periodicity of the signal.
In Figure 7(b), we observe that the period estimate of the particle
�lter closely follows the true period changing curve, whereas other
algorithms perform badly with changes in the period value. Particle
�lter algorithm also converges quickly to the true period a�er the
true period changes which enables it to catch rapid dynamics of a
system. We note that similar behavior is noticed in our experiments
with human steps as walking speed changes in section 4.3.1.

We also tested the system on data generated under di�erent
models – with di�erent distributions (normal, Laplace, gamma,
uniform etc with di�erent parameters) for noise rate and inter-event
time, and found that the system detects periodicity accurately. As
explained in Section 2, this is due to the fact that for the sake of
adaptability, the system prioritises local features over global ones,
and thus is not greatly a�ected by di�erences in global models. We
omit the detailed plots here.

4.2.3 Execution time comparison. We measured the time taken
to run the particle �lter on datasets of various sizes, and found that
computing based on 256 particles is quite e�cient and takes less
time to process a large event stream compared to Fourier Transform
algorithm and other algorithms.

�e particle �lter operates with constant amount of computa-
tion per event, thus its execution time increases linearly with the
number of events, while Fast Fourier Transform takes O (n logn)
time to process a signal of length n. �us, the FFT execution time
increases at a superlinear rate. Figure 7(c) shows that as expected,
the particle �lter requires less time to process large event stream
compared to Fast Fourier Transform. �e Segmentation based algo-
rithm and autocorrelation check for all possible period values and
require substantially larger execution times, and are omi�ed in this
plot. �e plot is based on a period value to 10, relative deviation
of periodic events to 0.2, and relative amount of noise events to
the periodic events to 0.05. We used particle �lter based method
implemented using Java 1.7 in Linux and Fast Fourier Transform
functionality available in Apache math library [1]. We run these
two algorithms in a typical desktop machine with 8GB primary
memory and Intel i5 processor.

One of the advantages of the particle �lter is that it processes
events only as they happen, and do not perform computations in
their absence. In contrast, the complexity of methods like Fourier
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Figure 6: Base signal parameters: periodT=10. Average number of noise events per periodic event = 0.05. Relative deviation of
periodic events 0.1. (a) Relative error in period detection for di�erent deviations of periodic events (σ/T ). Noise rate is low to
focus on the e�ect of σ . Even for large σ , particle �lter shows small error and high reliability. (b) Period detection error with
increasing rate of noise events relative to periodic events. Particle �lter performs signi�cantly better for reasonably large
error sizes. (c) Particle �lter has lowest period detection error over varying periods.
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Figure 7: Base signal parameters for (a) and (b): relative deviation of periodic events = 0.2, and relative amount of noise events
to the periodic events = 0.01 (a) Periodicity of the signal is set to 10.0. Experiment plots RMS error from 16 iterations. Particle
Filter based method converges faster than other algorithms. (b) Particle �lter based method successfully tracks changing
periodicity of the signal. Period estimate for Fourier Transform algorithm is not shown completely as it is too large beyond
certain point. (c) Particle �lter based method needs less time to process large event stream compared to Fourier Transform.
(c) Particle �lter based method execution time increases linearly with number of events.

transform and autocorrelation scale with the duration of the se-
quence, as opposed to number of events. �us in systems with
sparse events, or with very high sampling rates, these methods
incur high cost for the quiet regions, while the cost of particle �l-
ters are independent of these parameters and depend only on the
number of events. We believe that the particle �lter can be made
more e�cient than this prototype implementation with suitable
code optimizations.

4.3 Experiments on real datasets
We found that the particle �lter can closely track changing peri-
odicity in human gait data in comparison to other algorithms and
accurately predict next human pulse event with low error.

4.3.1 Periodicity in human step data . We compared the perfor-
mance of the particle �lter based algorithm with other algorithms
described in subsection 4.1 for tracking changing periodicity in hu-
man steps. We collected accelerometer signals using mobile phones

while users walk at their own pace, varying their walking speed
between walking segments. An accelerometer measures acceler-
ation of a user giving a three dimensional signal Sx , Sy , and Sz .
�e Euclidean norm represents the magnitude of the signal at time
t : St =

√
(Sxt )

2 + (S
y
t )

2 + (Szt )
2, followed by smoothing using a

Gaussian �lter and normalizing around its mean. All peaks in the
normalized signal above a prede�ned threshold are considered as
discrete step events. Taking di�erent values for threshold results
in di�erent rates of noise events as we have seen in Figure 1. We
calculated the ground truth of step periodicity as the average time
taken per step over a segment.

Tracking a single walking trace. Figure 8(a) shows that the es-
timated period from the particle �lter closely tracks the changing
curve of ground truth step periodicity as it changes between seg-
ments. Here we used the threshold as the half of the standard
deviation of the smoothed magnitude signal to detect step events.
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Figure 8(b) shows that due to its local adaptive nature, the par-
ticle �lter has the lowest periodicity estimation error among all
algorithms. Figure 8(c) shows the CDF of error over twelve traces
collected from six di�erent people.

�e particle �lter method is robust to di�erent choices of thresh-
olds for extracting step events from the accelerometer signal. �is
is shown in Figure 9 for di�erent choices of threshold.

4.3.2 Pulse prediction. �e particle �lter can reliably predict
upcoming events in a noisy sequence. For this experiment we col-
lected videos of users’ �ngertips, and used the red color component
as a signal for pulse events. We applied similar preprocessing on
the pulse signal as we did for accelerometer signal.

�e estimate of period by the particle �lter gives an estimate of
the next event time. We measured the next pulse event prediction
error as the absolute di�erence in predicted and actual event times.
Figure 10 shows that the particle �lter quickly converges to reliably
predict the pulse event and consistently performs be�er than other
algorithms. �e larger errors (e.g. at around 55 second mark)
represent sudden changes in heart rate due to change in user’s
activity.

5 DISCUSSION OF RELATEDWORK
Time series analysis has traditionally considered real-valued func-
tions. Fourier transform is a natural tool for detecting periodic
pa�erns in real-valued signals, and has also been applied to detect
periodicity in binary event streams [12]. However, as observed
in [18], it does not perform well in data with noise, missing signals
and other errors. It also does not lend itself to online inference,
which is one of our main desiderata. Further, Fourier transform
aims to �t a global phase and periodicity to the data. In our model,
where phase can dri�, the signal can easily go out of phase with
the basic sine wave (Figure 2).

A sketch based approach in [11] uses random linear projection
over windows of time series data to compress them for easier com-
parison. �is makes comparison between windows easier, but does
not easily extend to detecting periodic events at arbitrarily large
scales. More recently, Gaussian processes with periodic and Fourier
kernels have been used to detect such periodic pa�erns [9, 21].
�ese methods can detect periodic relationships in real-valued sig-
nals, but it is unclear how they might be extended to accommodate
point events or online inference; the cost of inference scales at
least linearly with the number of data points being considered (and
is O (N 3) in naive implementations), falling short of our goal of
constant-time inference per new event.

More relevant to our topic, Li et al. [18] and its extension [19]
have recently considered detecting periodicity in binary event se-
quences with noise. �is approach is based on the intuition that
the histogram modulo the correct time period will show peaks cor-
responding to true periodic events. �is trial for various candidate
periods, however, makes the method computationally expensive
and di�cult to adapt to streaming data. �is method also is based
on the model of a system with a �xed phase and thus fails when
applied to more dynamic models.

Periodicity in sequences of symbols or strings has been consid-
ered in various other contexts. A �ltering method based on the

“apriori property”, is described in [10]. It aims to �nd frequent pe-
riodic sequences in strings, which is computationally expensive.
Other methods for periodicity in symbol sequences including gene
sequences are considered in [13, 26].

None of these existing methods can handle input with intrinsic
variability which can cause the phase of the periodicity to change.
As a result, as we saw in our experiments, these methods are not
suitable for online operation or tracking rapidly changing periods
of signals.

6 CONCLUSION
We have demonstrated the use of a sequential Monte Carlo method
to detect and track the periodicity in discrete event streams. Unlike
other methods, this technique does not rely on the underlying
process sticking to a constant phase. As a result, it adapts to noise
and changes in period very quickly. Experiments show this method
to be more accurate and e�cient than existing methods for detecting
periodicity in noisy event streams.

Our basic approach is quite general, and can be adapted to detect
and characterize more complex temporal pa�erns. Doing so will
require a more �exible class of event-generating functions, which
we expect will be a fruitful area for future research.
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Figure 8: (a) Periodicity estimation on human step data. Particle �lter based method closely follows changing periodicity. (b)
Error in period estimation in human gait data. Particle �lter based method has lowest periodicity detection error. (c) Particle
�lter based algorithm has small periodicity estimation error for all the samples.
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